Nanofiber-reinforced polymer nanocomposite with hierarchical interfaces for high-temperature dielectric energy storage applications

被引:14
|
作者
Zhi, Jiapeng [1 ,2 ]
Wang, Jian [1 ,2 ]
Shen, Zhonghui [1 ,2 ]
Li, Baowen [1 ,2 ]
Zhang, Xin [1 ,2 ]
Nan, Ce-Wen [3 ]
机构
[1] Wuhan Univ Technol, Ctr Smart Mat & Devices, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
high temperature; energy storage; dielectrics; polymer nanocomposite; film capacitor; DISCHARGE EFFICIENCY; DENSITY CAPACITORS; FILMS; STRENGTH;
D O I
10.1007/s40843-022-2412-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible polymer nanocomposites reinforced by high-dielectric-constant ceramic nanofillers have shown great potential for dielectric energy storage applications in advanced electronic and electrical systems. However, it remains a challenge to improve their energy density and energy efficiency at high temperatures above 150 degrees C. Here, we report a nanofiber-reinforced polyetherimide nanocomposite employing BN-BaTiO3 heterogeneous nanofibers as fillers, where the BN nanoparticles were embedded inside BaTiO3 nanofibers to create BN/BaTiO3/PEI hierarchical interfaces. The high dielectric constant and the geometric large aspect ratio of the BN-BaTiO3 heterogeneous nanofibers lead to simultaneously increased dielectric constant and breakdown strength of the nanocomposite over a broad temperature range. In particular, the emerging hierarchical BN/BaTiO3/PEI interfaces enable promoted density and energy level of traps for the mobile charges, which further suppresses the conduction loss and improves the breakdown strength under high temperatures, as confirmed by a combination of thermally stimulated depolarization current measurement and phase-field simulation. Finally, the nanocomposite with hierarchical interfaces boosts an ultrahigh energy density of 5.23 J cm(-3) with an energy efficiency of > 90% at 150 degrees C, which is the highest energy density reported so far in nanofiber-reinforced polymer nanocomposites and also outperforms most nanocomposites counterparts dispersed with nanoparticles and nanosheets. Our work demonstrates hierarchical interface engineering as an effective strategy to promote the high-temperature energy storage performance of fiber-reinforced polymer nanocomposites, which is of significance for their applications in high-temperature harsh conditions.
引用
收藏
页码:2652 / 2661
页数:10
相关论文
共 50 条
  • [31] Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films
    Ding, Song
    Bao, Zhiwei
    Wang, Yiwei
    Dai, Zhizhan
    Jia, Jiangheng
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    JOURNAL OF POWER SOURCES, 2023, 570
  • [32] Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications
    Siwal, Samarjeet Singh
    Zhang, Qibo
    Devi, Nishu
    Thakur, Vijay Kumar
    POLYMERS, 2020, 12 (03)
  • [33] Superior dielectric energy storage performance for high-temperature film capacitors through molecular structure design
    Ding, Song
    Jia, Jiangheng
    Dai, Zhizhan
    Wang, Yiwei
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [34] Interface engineering of polymer composite films for high-temperature capacitive energy storage
    Yu, Xiang
    Yang, Rui
    Zhang, Wenqi
    Yang, Xiao
    Ma, Chuang
    Sun, Kaixuan
    Shen, Guangyi
    Lv, Fangcheng
    Fan, Sidi
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [35] Research progress of polymer based dielectrics for high-temperature capacitor energy storage
    Dong Jiu-Feng
    Deng Xing-Lei
    Niu Yu-Juan
    Pan Zi-Zhao
    Wang Hong
    ACTA PHYSICA SINICA, 2020, 69 (21)
  • [36] Metallized stacked polymer film capacitors for high-temperature capacitive energy storage
    Ren, Weibin
    Yang, Minzheng
    Guo, Mengfan
    Zhou, Le
    Pan, Jiayu
    Xiao, Yao
    Xu, Erxiang
    Nan, Ce-Wen
    Shen, Yang
    ENERGY STORAGE MATERIALS, 2024, 65
  • [37] High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications
    Huang, Xingyi
    Sun, Bin
    Zhu, Yingke
    Li, Shengtao
    Jiang, Pingkai
    PROGRESS IN MATERIALS SCIENCE, 2019, 100 : 187 - 225
  • [38] Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage
    Barber, Peter
    Balasubramanian, Shiva
    Anguchamy, Yogesh
    Gong, Shushan
    Wibowo, Arief
    Gao, Hongsheng
    Ploehn, Harry J.
    zur Loye, Hans-Conrad
    MATERIALS, 2009, 2 (04) : 1697 - 1733
  • [39] Flexible Reduced Graphene Oxide/Polyacrylonitrile Dielectric Nanocomposite Films for High-Temperature Electronics Applications
    Su, Yaotian
    Zhang, Wenqing
    Lan, Jinle
    Sui, Gang
    Zhang, Hongtao
    Yang, Xiaoping
    ACS APPLIED NANO MATERIALS, 2020, 3 (07): : 7005 - 7015
  • [40] Research Progress on High Temperature Energy Storage Performance of Polymer-based Composite Dielectric Films
    Zhang T.
    Yang L.
    Zhang C.
    Chi Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (05): : 1526 - 1539