Nanofiber-reinforced polymer nanocomposite with hierarchical interfaces for high-temperature dielectric energy storage applications

被引:14
|
作者
Zhi, Jiapeng [1 ,2 ]
Wang, Jian [1 ,2 ]
Shen, Zhonghui [1 ,2 ]
Li, Baowen [1 ,2 ]
Zhang, Xin [1 ,2 ]
Nan, Ce-Wen [3 ]
机构
[1] Wuhan Univ Technol, Ctr Smart Mat & Devices, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
high temperature; energy storage; dielectrics; polymer nanocomposite; film capacitor; DISCHARGE EFFICIENCY; DENSITY CAPACITORS; FILMS; STRENGTH;
D O I
10.1007/s40843-022-2412-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible polymer nanocomposites reinforced by high-dielectric-constant ceramic nanofillers have shown great potential for dielectric energy storage applications in advanced electronic and electrical systems. However, it remains a challenge to improve their energy density and energy efficiency at high temperatures above 150 degrees C. Here, we report a nanofiber-reinforced polyetherimide nanocomposite employing BN-BaTiO3 heterogeneous nanofibers as fillers, where the BN nanoparticles were embedded inside BaTiO3 nanofibers to create BN/BaTiO3/PEI hierarchical interfaces. The high dielectric constant and the geometric large aspect ratio of the BN-BaTiO3 heterogeneous nanofibers lead to simultaneously increased dielectric constant and breakdown strength of the nanocomposite over a broad temperature range. In particular, the emerging hierarchical BN/BaTiO3/PEI interfaces enable promoted density and energy level of traps for the mobile charges, which further suppresses the conduction loss and improves the breakdown strength under high temperatures, as confirmed by a combination of thermally stimulated depolarization current measurement and phase-field simulation. Finally, the nanocomposite with hierarchical interfaces boosts an ultrahigh energy density of 5.23 J cm(-3) with an energy efficiency of > 90% at 150 degrees C, which is the highest energy density reported so far in nanofiber-reinforced polymer nanocomposites and also outperforms most nanocomposites counterparts dispersed with nanoparticles and nanosheets. Our work demonstrates hierarchical interface engineering as an effective strategy to promote the high-temperature energy storage performance of fiber-reinforced polymer nanocomposites, which is of significance for their applications in high-temperature harsh conditions.
引用
收藏
页码:2652 / 2661
页数:10
相关论文
共 50 条
  • [21] High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with high efficiency
    Li, Wen-Bo
    Zhou, Di
    Liu, Wen-Feng
    Su, Jin-Zhan
    Hussain, Fayaz
    Wang, Da-Wei
    Wang, Ge
    Lu, Zhi-Lun
    Wang, Qiu-Ping
    CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [22] A review on nanofiber reinforced aerogels for energy storage and conversion applications
    Chhetri, Kisan
    Subedi, Subhangi
    Muthurasu, Alagan
    Ko, Tae Hoon
    Dahal, Bipeen
    Kim, Hak Yong
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [23] Flexible High-Temperature Polymer Dielectrics Induced by Ultraviolet Radiation for High Efficient Energy Storage
    Pei, Jia-Yao
    Zhu, Jing
    Yin, Li-Juan
    Zhao, Yu
    Yang, Minhao
    Zhong, Shao-Long
    Feng, Qi-Kun
    Dang, Zhi-Min
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)
  • [24] Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage
    Wang, Yifei
    Li, Zongze
    Wu, Chao
    Zhou, Peinan
    Zhou, Jierui
    Huo, Jindong
    Davis, Kerry
    Konstantinou, Antigoni C.
    Hiep Nguyen
    Cao, Yang
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [25] Enhancing Dielectric and High-Temperature Energy Storage Capability for Benzoxazole Polymer Films Featuring Naphthalene Ring Blocks
    Wang, Xinhua
    Ni, Xinyao
    Yuan, You
    Qian, Jun
    Zuo, Peiyuan
    Liu, Xiaoyun
    Zhuang, Qixin
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (10) : 8143 - 8150
  • [26] Nanodiamond/Polyimide High Temperature Dielectric Films for Energy Storage Applications
    Wang, David H.
    Fillery, Scott P.
    Durstock, Michael F.
    Dai, Liming
    Vaia, Richard A.
    Tan, Loon-Seng
    CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 : 410 - +
  • [27] Flexible high-temperature dielectric materials from polymer nanocomposites
    Li, Qi
    Chen, Lei
    Gadinski, Matthew R.
    Zhang, Shihai
    Zhang, Guangzu
    Li, Haoyu
    Haque, Aman
    Chen, Long-Qing
    Jackson, Thomas N.
    Wang, Qing
    NATURE, 2015, 523 (7562) : 576 - +
  • [28] High-temperature capacitive energy stroage in polymer nanocomposites through nanoconfinement
    Li, Xinhui
    Liu, Bo
    Wang, Jian
    Li, Shuxuan
    Zhen, Xin
    Zhi, Jiapeng
    Zou, Junjie
    Li, Bei
    Shen, Zhonghui
    Zhang, Xin
    Zhang, Shujun
    Nan, Ce-Wen
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [29] A synergistic strategy for fabricating a highly flexible poly(m-phenylene isophthalamide) nanofiber-reinforced polyimide aerogel for high-temperature filtration
    Yue, Wanli
    Cao, Ying
    Han, Ruikai
    Ren, Libing
    Liu, Simeng
    Liu, Fan
    He, Jianxin
    Shao, Weili
    Chen, Li
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (47)
  • [30] Rationally designed high-temperature polymer dielectrics for capacitive energy storage: An experimental and computational alliance
    Aklujkar, Pritish S.
    Gurnani, Rishi
    Rout, Pragati
    Khomane, Ashish R.
    Mutegi, Irene
    Desai, Mohak
    Pollock, Amy
    Toribio, John M.
    Hao, Jing
    Cao, Yang
    Ramprasad, Rampi
    Sotzing, Gregory
    PROGRESS IN POLYMER SCIENCE, 2025, 161