Invariant manifolds for products of random diffeomorphisms

被引:0
作者
Dahlke S. [1 ]
机构
[1] Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 52056 Aachen
关键词
Ergodic theory; Invariant manifolds; Lyapunov exponents; Random diffeomorphisms;
D O I
10.1007/BF02219220
中图分类号
学科分类号
摘要
This paper is concerned with the construction of invariant families of submanifolds for products of random diffeomorphisms on a compact Riemannian manifold. These submanifolds can be obtained for almost arbitrary parameters disjoint from the Lyapunov spectrum of the resulting cocycle. Local measurable families are constructed and the globalization problem is discussed. We present a globalization result for generalized stable and unstable manifolds. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:157 / 210
页数:53
相关论文
共 20 条
  • [1] Abraham R., Robbin J., Transversal Mappings and Flows, (1967)
  • [2] Arnold L., Crauel H., Random dynamical systems, Lecture Notes in Mathematics, 1486, pp. 1-22, (1991)
  • [3] Boxler P., A stochastic version of center manifold theory, Prob. Th. Rel. Fields, 83, pp. 505-545, (1989)
  • [4] Brin M., Kifer Y., Dynamics of Markov chains and stable manifolds for random diffeomorphisms, Ergod. Theory Dynam. Syst., 7, pp. 351-374, (1987)
  • [5] Carr J., Applications of Center Manifold Theory, (1981)
  • [6] Carverhill A., Flows of stochastic dynamical systems: Ergodic theory, Stochastics, 14, pp. 273-317, (1985)
  • [7] Crauel H., Extremal exponents of random dynamical systems do not vanish, J. Dynam. Diff. Eq., 2, pp. 245-291, (1990)
  • [8] Dahlke S., Invariant Families of Submanifolds for Diffeomorphims, (1988)
  • [9] Dahlke S., Invariante Mannigfaltigkeiten für Produkte Zufälliger Diffeomorphismen, (1989)
  • [10] Fathi A., Herman M., Yoccoz J.C., Proof of Pesin's stable manifold theorem, Lecture Notes in Mathematics, 1007, pp. 177-215, (1983)