Exact partition functions for deformed N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories with Nf=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{N}}_f=4 $$\end{document} flavours

被引:0
作者
Matteo Beccaria
Alberto Fachechi
Guido Macorini
Luigi Martina
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica Ennio De Giorgi
[2] INFN,undefined
关键词
Extended Supersymmetry; Nonperturbative Effects; Supersymmetric Effective Theories;
D O I
10.1007/JHEP12(2016)029
中图分类号
学科分类号
摘要
We consider the Ω-deformed N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SU(2) gauge theory in four dimensions with Nf = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ε1, ε2, the scalar field expectation value a, and the hypermultiplet masses m = (m1, m2, m3, m4). Motivated by recent findings in the N=2*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={2}^{*} $$\end{document} theory, we explore the theories that are characterized by special fixed ratios ε2/ε1 and m/ε1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set ΠN of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N=2*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={2}^{*} $$\end{document} gauge theory, the full prepotential of the ΠN theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov’s recursion for the ΠN conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.
引用
收藏
相关论文
共 208 条
  • [31] Billó M(2011)On AGT conjecture Lett. Math. Phys. 98 33-undefined
  • [32] Frau M(2009)On combinatorial expansion of the conformal blocks arising from AGT conjecture J. Phys. A 42 304011-undefined
  • [33] Fucito F(2010)Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks JHEP 01 063-undefined
  • [34] Lerda A(2011)Recursive representation of the torus 1-point conformal block J. Geom. Phys. 61 1203-undefined
  • [35] Morales JF(2014)On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles JHEP 03 124-undefined
  • [36] Poghossian R(2013)Classical torus conformal block, N = 2 JHEP 10 009-undefined
  • [37] Hellerman S(2016) twisted superpotential and the accessory parameter of Lamé equation JHEP 06 183-undefined
  • [38] Orlando D(2011)Transformations of Spherical Blocks JHEP 11 077-undefined
  • [39] Reffert S(2013)Holographic interpretation of 1-point toroidal block in the semiclassical limit Annales Henri Poincaré 14 425-undefined
  • [40] Hellerman S(2012)The exact 8d chiral ring from 4d recursion relations JHEP 06 152-undefined