Crossed Luttinger liquid hidden in a quasi-two-dimensional material

被引:0
|
作者
X. Du
L. Kang
Y. Y. Lv
J. S. Zhou
X. Gu
R. Z. Xu
Q. Q. Zhang
Z. X. Yin
W. X. Zhao
Y. D. Li
S. M. He
D. Pei
Y. B. Chen
M. X. Wang
Z. K. Liu
Y. L. Chen
L. X. Yang
机构
[1] Tsinghua University,State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics
[2] Nanjing University,National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering
[3] University of Oxford,Department of Physics, Clarendon Laboratory
[4] School of Physical Science and Technology,undefined
[5] ShanghaiTech University and CAS-Shanghai Science Research Center,undefined
[6] ShanghaiTech Laboratory for Topological Physics,undefined
[7] Frontier Science Center for Quantum Information,undefined
[8] Collaborative Innovation Center of Quantum Matter,undefined
来源
Nature Physics | 2023年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Although the concept of the Luttinger liquid (LL) describing a one-dimensional (1D) interacting fermion system1,2 collapses at higher dimensions, it has been proposed to be relevant to enigmatic problems in condensed matter physics including the normal state of cuprate superconductors3–5, unconventional metals6,7 and quantum criticality8,9. Here we investigate the electronic structure of quasi-2D η-Mo4O11, a charge-density wave material, using high-resolution angle-resolved photoemission spectroscopy and ab initio calculations. We show a prototypical LL behaviour originating from the crossed quasi-1D chain arrays hidden in the quasi-2D crystal structure. Our results suggest that η-Mo4O11 materializes the crossed LL phase10–12 in its normal state, where the orthogonal orbital components substantially reduce the coupling between intersecting quasi-1D chains and therefore maintain the essential properties of the LL. Our finding not only presents a realization of a 2D LL, but also provides a new angle to understand non-Fermi liquid behaviour in other 2D and 3D quantum materials.
引用
收藏
页码:40 / 45
页数:5
相关论文
共 50 条
  • [31] Quasi-two-dimensional solitons in ferroelectrics
    Belokonenko M.B.
    Kabakov V.V.
    Russian Physics Journal, 2000, 43 (7) : 537 - 541
  • [32] Binding of quasi-two-dimensional biexcitons
    Birkedal, D
    Singh, J
    Lyssenko, VG
    Erland, J
    Hvam, JM
    PHYSICAL REVIEW LETTERS, 1996, 76 (04) : 672 - 675
  • [33] Quasi-two-dimensional organic superconductors
    Wosnitza, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 146 (5-6) : 641 - 667
  • [34] On the structure of quasi-two-dimensional foams
    Cox, S. J.
    Janiaud, E.
    PHILOSOPHICAL MAGAZINE LETTERS, 2008, 88 (9-10) : 693 - 701
  • [35] Condensate in quasi-two-dimensional turbulence
    Musacchio, S.
    Boffetta, G.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (02):
  • [36] Quasi-Two-Dimensional Organic Superconductors
    J. Wosnitza
    Journal of Low Temperature Physics, 2007, 146 : 641 - 667
  • [37] Quasi-two-dimensional acoustic metamaterials
    Torrent, D.
    Gracia-Salgado, R.
    Garcia-Chocano, V. M.
    Cervera, F.
    Sanchez-Dehesa, J.
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES IV, 2014, 8994
  • [38] Quasi-two-dimensional thermoelectricity in SnSe
    Tayari, V.
    Senkovskiy, B. V.
    Rybkovskiy, D.
    Ehlen, N.
    Fedorov, A.
    Chen, C. -Y.
    Avila, J.
    Asensio, M.
    Perucchi, A.
    di Pietro, P.
    Yashina, L.
    Fakih, I.
    Hemsworth, N.
    Petrescu, M.
    Gervais, G.
    Grueneis, A.
    Szkopek, T.
    PHYSICAL REVIEW B, 2018, 97 (04)
  • [39] Quasi-two-dimensional dipolar scattering
    Ticknor, Christopher
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [40] Quasi-two-dimensional and three-dimensional turbulence in rotational spherical liquid layers
    Zhilenko, D. Yu.
    Krivonosova, O. E.
    JETP LETTERS, 2015, 101 (08) : 527 - 532