机构:Universidad de La Laguna,Departamento de Analisis Matemático
Marta de León-Contreras
Karl-Mikael Perfekt
论文数: 0引用数: 0
h-index: 0
机构:Universidad de La Laguna,Departamento de Analisis Matemático
Karl-Mikael Perfekt
机构:
[1] Universidad de La Laguna,Departamento de Analisis Matemático
[2] Campus de Anchieta,Department of Mathematical Sciences
[3] Norwegian University of Science and Technology (NTNU),undefined
来源:
Mathematische Annalen
|
2023年
/
387卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We characterize the essential spectrum of the plasmonic problem for polyhedra in R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^3$$\end{document}. The description is particularly simple for convex polyhedra and permittivities ϵ<-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\epsilon < - 1$$\end{document}. The plasmonic problem is interpreted as a spectral problem through a boundary integral operator, the direct value of the double layer potential, also known as the Neumann–Poincaré operator. We therefore study the spectral structure of the double layer potential for polyhedral cones and polyhedra.
机构:
Univ Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, BrazilUniv Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil
Copetti, M. I. M.
Aouadi, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carthage, Ecole Natl Ingenieurs Bizerte, BP66,Campus Univ, Menzel Abderrahman 7035, TunisiaUniv Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil