The quasi-static plasmonic problem for polyhedra

被引:0
|
作者
Marta de León-Contreras
Karl-Mikael Perfekt
机构
[1] Universidad de La Laguna,Departamento de Analisis Matemático
[2] Campus de Anchieta,Department of Mathematical Sciences
[3] Norwegian University of Science and Technology (NTNU),undefined
来源
Mathematische Annalen | 2023年 / 387卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the essential spectrum of the plasmonic problem for polyhedra in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}. The description is particularly simple for convex polyhedra and permittivities ϵ<-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon < - 1$$\end{document}. The plasmonic problem is interpreted as a spectral problem through a boundary integral operator, the direct value of the double layer potential, also known as the Neumann–Poincaré operator. We therefore study the spectral structure of the double layer potential for polyhedral cones and polyhedra.
引用
收藏
页码:1533 / 1577
页数:44
相关论文
共 50 条
  • [1] The quasi-static plasmonic problem for polyhedra
    De Leon-Contreras, Marta
    Perfekt, Karl-Mikael
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1533 - 1577
  • [2] Quasi-static Compaction of Polyhedra by the Discrete Element Method
    Smith, Kyle C.
    Fisher, Timothy S.
    Alam, Meheboob
    POWDERS AND GRAINS 2009, 2009, 1145 : 90 - +
  • [3] On the limits of quasi-static theory in plasmonic nanostructures
    Crotti, Giulia
    Schirato, Andrea
    Zaccaria, Remo Proietti
    Della Valle, Giuseppe
    JOURNAL OF OPTICS, 2022, 24 (01)
  • [4] THE QUASI-STATIC WHEEL-TRACK PROBLEM
    SCHOMBURG, U
    KRAUSE, H
    KRAPOTH, A
    ISE, G
    CEVALLOS, CEA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (04): : T203 - T205
  • [5] INITIAL VALUE PROBLEM IN QUASI-STATIC THERMOELASTICITY
    DOMANSKI, Z
    PISKOREK, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1971, 19 (02): : 101 - &
  • [6] A QUASI-STATIC SPHERICALLY SYMMETRIC PROBLEM OF THERMOPLASTICITY
    RANIECKI, B
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1965, 13 (02): : 117 - &
  • [7] QUASI-STATIC PROBLEM OF CRACK IN AN ELASTIC MEDIUM
    MATCZYNSKI, M
    ARCHIWUM MECHANIKI STOSOWANEJ, 1970, 22 (05): : 607 - +
  • [8] On the plane problem of orthotropic quasi-static thermoelasticity
    Wei, Lin, 1600, Kluwer Academic Publishers, Dordrecht, Netherlands (41):
  • [9] A QUASI-STATIC FRICTIONAL PROBLEM WITH NORMAL COMPLIANCE
    ANDERSSON, LE
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (04) : 347 - 369
  • [10] On a problem of quasi-static optimization with discrete controls
    Afanas'ev, AP
    Dzyuba, SM
    Krimshtein, AA
    Churkin, AV
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1998, 37 (03) : 416 - 419