Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes

被引:0
|
作者
Lifeng Han
Changhan He
Huy Dinh
John Fricks
Yang Kuang
机构
[1] University of Colorado,Department of Mathematics
[2] University of California,Department of Mathematics
[3] New York University,Courant Institute of Mathematical
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Spatio-temporal data; Gaussian processes; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Model discovery methods offer a promising way to understand biology from data. We propose a method to learn biological dynamics from spatio-temporal data by Gaussian processes. This approach is essentially “equation free” and hence avoids model derivation, which is often difficult due to high complexity of biological processes. By exploiting the local nature of biological processes, dynamics can be learned with data sparse in time. When the length scales (hyperparameters) of the squared exponential covariance function are tuned, they reveal key insights of the underlying process. The squared exponential covariance function also simplifies propagation of uncertainty in multi-step forecasting. After evaluating the performance of the method on synthetic data, we demonstrate a case study on real image data of E. coli colony.
引用
收藏
相关论文
共 50 条
  • [41] An Enhanced Imputation Approach for Spatio-Temporal Clinical Data
    Yin, Yilin
    Chou, Chun-An
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 813 - 818
  • [42] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [43] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [44] Generative Adversarial Networks for Spatio-temporal Data: A Survey
    Gao, Nan
    Xue, Hao
    Shao, Wei
    Zhao, Sichen
    Qin, Kyle Kai
    Prabowo, Arian
    Rahaman, Mohammad Saiedur
    Salim, Flora D.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [45] Spatio-Temporal Meta Learning for Urban Traffic Prediction
    Pan, Zheyi
    Zhang, Wentao
    Liang, Yuxuan
    Zhang, Weinan
    Yu, Yong
    Zhang, Junbo
    Zheng, Yu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1462 - 1476
  • [46] Preservation of implicit privacy in spatio-temporal data publication
    Wang L.
    Meng X.-F.
    Guo S.-N.
    Meng, Xiao-Feng (xfmeng@ruc.edu.cn), 1922, Chinese Academy of Sciences (27): : 1922 - 1933
  • [47] Low Complexity Sensing for Big Spatio-Temporal Data
    Lee, Dongeun
    Choi, Jaesik
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 323 - 328
  • [48] MODELING AND VISUALIZATION OF SPACE OBJECTS SPATIO-TEMPORAL DATA
    Xu Qing
    Zhou Yang
    Zhang Baoming
    Lan ChaoZhen
    4TH ISPRS INTERNATIONAL WORKSHOP 3D-ARCH 2011: 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2011, 38-5 (W16): : 155 - 162
  • [49] A programming model for spatio-temporal data streaming applications
    Imai, Shigeru
    Varela, Carlos A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1139 - 1148
  • [50] Spatio-Temporal Data Mining: A Survey of Problems and Methods
    Atluri, Gowtham
    Karpatne, Anuj
    Kumar, Vipin
    ACM COMPUTING SURVEYS, 2018, 51 (04)