Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes

被引:0
|
作者
Lifeng Han
Changhan He
Huy Dinh
John Fricks
Yang Kuang
机构
[1] University of Colorado,Department of Mathematics
[2] University of California,Department of Mathematics
[3] New York University,Courant Institute of Mathematical
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Spatio-temporal data; Gaussian processes; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Model discovery methods offer a promising way to understand biology from data. We propose a method to learn biological dynamics from spatio-temporal data by Gaussian processes. This approach is essentially “equation free” and hence avoids model derivation, which is often difficult due to high complexity of biological processes. By exploiting the local nature of biological processes, dynamics can be learned with data sparse in time. When the length scales (hyperparameters) of the squared exponential covariance function are tuned, they reveal key insights of the underlying process. The squared exponential covariance function also simplifies propagation of uncertainty in multi-step forecasting. After evaluating the performance of the method on synthetic data, we demonstrate a case study on real image data of E. coli colony.
引用
收藏
相关论文
共 50 条
  • [31] Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems
    Huang, Yu
    Tang, Yufei
    Zhu, Xingquan
    Zhuang, Hanqi
    Cherubin, Laurent
    IEEE ACCESS, 2022, 10 : 112909 - 112920
  • [32] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [33] Computing the Relative Value of Spatio-Temporal Data in Data Marketplaces
    Andres Azcoitia, Santiago
    Paraschiv, Marius
    Laoutaris, Nikolaos
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 165 - 175
  • [34] Spatio-temporal Crime Analysis and Forecasting on Twitter Data Using Machine Learning Algorithms
    Vivek M.
    Prathap B.R.
    SN Computer Science, 4 (4)
  • [35] Spatio-Temporal Machine Learning Analysis of Social Media Data and Refugee Movement Statistics
    Havas, Clemens
    Wendlinger, Lorenz
    Stier, Julian
    Julka, Sahib
    Krieger, Veronika
    Ferner, Cornelia
    Petutschnig, Andreas
    Granitzer, Michael
    Wegenkittl, Stefan
    Resch, Bernd
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (08)
  • [36] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [37] Tensor Kernel Recovery for Discrete Spatio-Temporal Hawkes Processes
    Sheen, Heejune
    Zhu, Xiaonan
    Xie, Yao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 5859 - 5870
  • [38] Summary statistics for spatio-temporal point processes on linear networks
    Moradi, Mehdi
    Sharifi, Ali
    SPATIAL STATISTICS, 2024, 61
  • [39] Mining Spatio-Temporal Data at Different Levels of Detail
    Camossi, Elena
    Bertolotto, Michela
    Kechadi, Tahar
    EUROPEAN INFORMATION SOCIETY: TAKING GEOINFORMATION SCIENCE ONE STEP FURTHER, 2009, : 225 - 240
  • [40] A Density-Based Clustering of Spatio-Temporal Data
    Zaghlool, Ehab
    ElKaffas, Saleh
    Saad, Amani
    NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, 2015, 354 : 41 - 50