Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes

被引:0
|
作者
Lifeng Han
Changhan He
Huy Dinh
John Fricks
Yang Kuang
机构
[1] University of Colorado,Department of Mathematics
[2] University of California,Department of Mathematics
[3] New York University,Courant Institute of Mathematical
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Spatio-temporal data; Gaussian processes; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Model discovery methods offer a promising way to understand biology from data. We propose a method to learn biological dynamics from spatio-temporal data by Gaussian processes. This approach is essentially “equation free” and hence avoids model derivation, which is often difficult due to high complexity of biological processes. By exploiting the local nature of biological processes, dynamics can be learned with data sparse in time. When the length scales (hyperparameters) of the squared exponential covariance function are tuned, they reveal key insights of the underlying process. The squared exponential covariance function also simplifies propagation of uncertainty in multi-step forecasting. After evaluating the performance of the method on synthetic data, we demonstrate a case study on real image data of E. coli colony.
引用
收藏
相关论文
共 50 条
  • [21] Managing Spatio-Temporal Data Streams on AUVs
    Werner, Tobias
    Brinkhoff, Thomas
    2018 IEEE/OES AUTONOMOUS UNDERWATER VEHICLE WORKSHOP (AUV), 2018,
  • [22] Spatio-temporal data management based on ORDB
    Peng, Xia
    Fang, Yu
    Huang, Zhou
    Chen, Bin
    GEOINFORMATICS 2006: GEOSPATIAL INFORMATION SCIENCE, 2006, 6420
  • [23] SILKNOWViz: Spatio-Temporal Data Ontology Viewer
    Sevilla, Javier
    Portales, Cristina
    Gimeno, Jesus
    Sebastian, Jorge
    COMPUTATIONAL SCIENCE - ICCS 2019, PT V, 2019, 11540 : 97 - 109
  • [24] Spatio-temporal modeling of residential sales data
    Gelfand, AE
    Ghosh, SK
    Knight, JR
    Sirmans, CF
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (03) : 312 - 321
  • [25] A Review of Maritime Spatio-temporal Data Analytics
    Newaliya, Nitin
    Singh, Yudhvir
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 219 - 226
  • [26] Architecture of RFID Spatio-Temporal Data Management
    Wang, Yong Hui
    Sun, Huan Liang
    Xu, Jing Ke
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-3, 2011, 314-316 : 2425 - 2428
  • [27] Modelling zero-inflated spatio-temporal processes
    Fernandes, Marcus V. M.
    Schmidt, Alexandra M.
    Migon, Helio S.
    STATISTICAL MODELLING, 2009, 9 (01) : 3 - 25
  • [28] A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation
    Yuan, Haitao
    Li, Guoliang
    DATA SCIENCE AND ENGINEERING, 2021, 6 (01) : 63 - 85
  • [29] Multi layer perceptron for the learning of spatio-temporal dynamics-application in thermal engineering
    De Lozzo, Matthias
    Klotz, Patricia
    Laurent, Beatrice
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (10) : 2270 - 2286
  • [30] A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation
    Haitao Yuan
    Guoliang Li
    Data Science and Engineering, 2021, 6 : 63 - 85