On the trace graph of matrices

被引:0
作者
M. Sivagami
T. Tamizh Chelvam
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 158卷
关键词
trace graph; matrix ring; sub Eulerian; super Eulerian; domination number; semisimple ring; 16S50; 05C25; 05C45; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity, Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} be the set of all n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \times n}$$\end{document} matrices over R and Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R) ^{*} }$$\end{document} be the set of all non-zero matrices of Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}. For a matrix A∈Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in M_n(R)}$$\end{document}, Tr(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (A)}$$\end{document} is the trace of A. The trace graph of the matrix ring Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document}, denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}, is the simple undirected graph denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} with vertex set {A∈Mn(R)∗:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{A \in M_n(R) ^{*} : }$$\end{document} there exists B∈Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B \in M_n(R) ^{*} }$$\end{document} such that Tr(AB)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}(AB)=0}\}$$\end{document} and two distinct vertices A and B are adjacent if and only if Tr(AB)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (AB) = 0}$$\end{document}. First, we prove that Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is 2-connected and hence obtain Eulerian properties of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}. Also we obtain the domination number of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} of a commutative semisimple ring R and obtain the domination number for Γt(Mn(Z2m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(\mathbb Z_2^m))}$$\end{document}. Finally, it is proved that for a commutative ring R with identity, Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is non-planar and classified all finite commutative rings R with identity for which the trace graph has thickness 2.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [41] Singleton coalition graph chains
    Davood Bakhshesh
    Michael A. Henning
    Dinabandhu Pradhan
    Computational and Applied Mathematics, 2024, 43
  • [42] The Coannihilator Graph of a Commutative Ring
    Afkhami, M.
    Khashyarmanesh, K.
    Rajabi, Z.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (01) : 1 - 11
  • [43] The nonsplit domination number of a graph
    Kulli, VR
    Janakiram, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (04) : 441 - 447
  • [44] The Domination Number of a Random Graph
    Henning, Michael A.
    Yeo, Anders
    UTILITAS MATHEMATICA, 2014, 94 : 315 - 328
  • [45] The isolate bondage number of a graph
    R. Arul Ananthan
    S. Balamurugan
    Acta Mathematica Hungarica, 2025, 175 (2) : 395 - 410
  • [46] Graph products and integer domination
    John, Niluk
    Suen, Stephen
    DISCRETE MATHEMATICS, 2013, 313 (03) : 217 - 224
  • [47] A Note on the Bondage Number of a Graph
    李育强
    数学季刊, 1994, (04) : 1 - 4
  • [48] A new graph parameter and a construction of larger graph without increasing radio k-chromatic number
    Sarkar, Ushnish
    Adhikari, Avishek
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (04) : 1365 - 1377
  • [49] A new graph parameter and a construction of larger graph without increasing radio k-chromatic number
    Ushnish Sarkar
    Avishek Adhikari
    Journal of Combinatorial Optimization, 2017, 33 : 1365 - 1377
  • [50] Geometry of rectangular matrices over semisimple ping
    Huang, Li-Ping
    Liu, Dan
    Zhao, Kang
    Ban, Tao
    Advances in Matrix Theory and Applications, 2006, : 28 - 31