机构:Manonmaniam Sundaranar University,Department of Mathematics
M. Sivagami
T. Tamizh Chelvam
论文数: 0引用数: 0
h-index: 0
机构:Manonmaniam Sundaranar University,Department of Mathematics
T. Tamizh Chelvam
机构:
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源:
Acta Mathematica Hungarica
|
2019年
/
158卷
关键词:
trace graph;
matrix ring;
sub Eulerian;
super Eulerian;
domination number;
semisimple ring;
16S50;
05C25;
05C45;
05C69;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let R be a commutative ring with identity, Mn(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_n(R)}$$\end{document} be the set of all n×n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n \times n}$$\end{document} matrices over R and Mn(R)∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_n(R) ^{*} }$$\end{document} be the set of all non-zero matrices of Mn(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_n(R)}$$\end{document} where n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n \geq 2}$$\end{document}. For a matrix A∈Mn(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A \in M_n(R)}$$\end{document}, Tr(A)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm Tr} (A)}$$\end{document} is the trace of A. The trace graph of the matrix ring Mn(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_n(R)}$$\end{document}, denoted by Γt(Mn(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(R))}$$\end{document}, is the simple undirected graph denoted by Γt(Mn(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(R))}$$\end{document} with vertex set
{A∈Mn(R)∗:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{{A \in M_n(R) ^{*} : }$$\end{document} there exists B∈Mn(R)∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${B \in M_n(R) ^{*} }$$\end{document} such that Tr(AB)=0}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm Tr}(AB)=0}\}$$\end{document} and two distinct vertices A and B are adjacent if and only if Tr(AB)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm Tr} (AB) = 0}$$\end{document}. First, we prove that Γt(Mn(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is 2-connected and hence obtain Eulerian properties of Γt(Mn(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(R))}$$\end{document}. Also we obtain the domination number of Γt(Mn(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(R))}$$\end{document} of a commutative semisimple ring R and obtain the domination number for Γt(Mn(Z2m))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(\mathbb Z_2^m))}$$\end{document}. Finally, it is proved that for a commutative ring R with identity, Γt(Mn(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is non-planar and classified all finite commutative rings R with identity for which the trace graph has thickness 2.
机构:
Kent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USAKent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
Dinh, Hai Quang
Gaur, Atul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delhi DU, Dept Math, Delhi 110007, IndiaKent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
Gaur, Atul
Kumar, Pratyush
论文数: 0引用数: 0
h-index: 0
机构:
Lovely Profess Univ, Sch Chem Engn & Phys Sci, Dept Math, Jalandhar 144001, IndiaKent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
Kumar, Pratyush
Singh, Manoj Kumar
论文数: 0引用数: 0
h-index: 0
机构:
Lovely Profess Univ, Sch Chem Engn & Phys Sci, Dept Math, Jalandhar 144001, IndiaKent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
Singh, Manoj Kumar
Singh, Abhay Kumar
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, IndiaKent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA