On the trace graph of matrices

被引:0
作者
M. Sivagami
T. Tamizh Chelvam
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 158卷
关键词
trace graph; matrix ring; sub Eulerian; super Eulerian; domination number; semisimple ring; 16S50; 05C25; 05C45; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity, Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} be the set of all n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \times n}$$\end{document} matrices over R and Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R) ^{*} }$$\end{document} be the set of all non-zero matrices of Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}. For a matrix A∈Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in M_n(R)}$$\end{document}, Tr(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (A)}$$\end{document} is the trace of A. The trace graph of the matrix ring Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document}, denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}, is the simple undirected graph denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} with vertex set {A∈Mn(R)∗:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{A \in M_n(R) ^{*} : }$$\end{document} there exists B∈Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B \in M_n(R) ^{*} }$$\end{document} such that Tr(AB)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}(AB)=0}\}$$\end{document} and two distinct vertices A and B are adjacent if and only if Tr(AB)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (AB) = 0}$$\end{document}. First, we prove that Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is 2-connected and hence obtain Eulerian properties of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}. Also we obtain the domination number of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} of a commutative semisimple ring R and obtain the domination number for Γt(Mn(Z2m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(\mathbb Z_2^m))}$$\end{document}. Finally, it is proved that for a commutative ring R with identity, Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is non-planar and classified all finite commutative rings R with identity for which the trace graph has thickness 2.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [31] A note on maps preserving products of matrices
    Lu, Lan
    Wang, Yu
    AIMS MATHEMATICS, 2024, 9 (07): : 17039 - 17062
  • [32] Decreasing the maximum degree of a graph
    Borg, Peter
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [33] Private domination number of a graph
    Prasad, B. Jaya
    Chelvam, T. Tamizh
    Chellathurai, S. Robinson
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05) : 661 - 666
  • [34] Total Domination Polynomial of A Graph
    Chaluvaraju, B.
    Chaitra, V.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2014, 6 (02): : 87 - 92
  • [35] Domination in transformation graph G(-+-)
    Jebitha, M. K. Angel
    Joseph, J. Paulraj
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (03) : 279 - 303
  • [36] Connected domsaturation number of a graph
    Arumugam, S
    Kala, R
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (10) : 1215 - 1221
  • [37] CYCLIC CODES OVER RINGS OF MATRICES
    Dinh, Hai Quang
    Gaur, Atul
    Kumar, Pratyush
    Singh, Manoj Kumar
    Singh, Abhay Kumar
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (04) : 1100 - 1122
  • [38] Bounds on graph eigenvalues I
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 667 - 671
  • [39] Singleton coalition graph chains
    Bakhshesh, Davood
    Henning, Michael A.
    Pradhan, Dinabandhu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (02)
  • [40] Domination in Discrete Topology Graph
    Jabor, Ali Ameer
    Omran, Ahmed Abd-Ali
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183