On the trace graph of matrices

被引:0
作者
M. Sivagami
T. Tamizh Chelvam
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 158卷
关键词
trace graph; matrix ring; sub Eulerian; super Eulerian; domination number; semisimple ring; 16S50; 05C25; 05C45; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity, Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} be the set of all n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \times n}$$\end{document} matrices over R and Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R) ^{*} }$$\end{document} be the set of all non-zero matrices of Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}. For a matrix A∈Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in M_n(R)}$$\end{document}, Tr(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (A)}$$\end{document} is the trace of A. The trace graph of the matrix ring Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document}, denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}, is the simple undirected graph denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} with vertex set {A∈Mn(R)∗:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{A \in M_n(R) ^{*} : }$$\end{document} there exists B∈Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B \in M_n(R) ^{*} }$$\end{document} such that Tr(AB)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}(AB)=0}\}$$\end{document} and two distinct vertices A and B are adjacent if and only if Tr(AB)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (AB) = 0}$$\end{document}. First, we prove that Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is 2-connected and hence obtain Eulerian properties of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}. Also we obtain the domination number of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} of a commutative semisimple ring R and obtain the domination number for Γt(Mn(Z2m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(\mathbb Z_2^m))}$$\end{document}. Finally, it is proved that for a commutative ring R with identity, Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is non-planar and classified all finite commutative rings R with identity for which the trace graph has thickness 2.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [21] Graphs from matrices - a survey
    Chelvam, T. Tamizh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (02) : 198 - 208
  • [22] INTERSECTION GRAPH OF A MODULE
    Yaraneri, Ergun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (05)
  • [23] On a graph of monogenic semigroups
    K Ch Das
    Nihat Akgüneş
    A Sinan Çevik
    Journal of Inequalities and Applications, 2013
  • [24] Domsaturation number of a graph
    Arumugam, S
    Kala, R
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (11) : 1671 - 1676
  • [25] The bondage and connectivity of a graph
    Liu, HL
    Sun, L
    DISCRETE MATHEMATICS, 2003, 263 (1-3) : 289 - 293
  • [26] On the domination number of a graph
    Pruchnewski, A
    DISCRETE MATHEMATICS, 2002, 251 (1-3) : 129 - 136
  • [27] Bounds on the differential of a graph
    Basilio, Ludwin A.
    Bermudo, Sergio
    Sigarreta, Jose M.
    UTILITAS MATHEMATICA, 2017, 103 : 319 - 334
  • [28] On a graph of monogenic semigroups
    Das, Kinkar Ch.
    Akgunes, Nihat
    Cevik, A. Sinan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [29] The path graph of the amalgamated graph of C3 and Cn at an edge or at a vertex
    Hussein, Eman
    Al-Ezeh, Hasan
    Abu Ghneim, Omar
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 492 - 502
  • [30] MATHEMATICAL MODELLING AND SIMULATION OF FINGERPRINT ANALYSIS USING GRAPH ISOMORPHISM, DOMINATION, AND GRAPH PEBBLING
    Binwal, Jitendra
    Devi, Renu
    Singh, Bhupendra
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 259 - 284