On the trace graph of matrices

被引:0
|
作者
M. Sivagami
T. Tamizh Chelvam
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 158卷
关键词
trace graph; matrix ring; sub Eulerian; super Eulerian; domination number; semisimple ring; 16S50; 05C25; 05C45; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity, Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} be the set of all n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \times n}$$\end{document} matrices over R and Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R) ^{*} }$$\end{document} be the set of all non-zero matrices of Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document} where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}. For a matrix A∈Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in M_n(R)}$$\end{document}, Tr(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (A)}$$\end{document} is the trace of A. The trace graph of the matrix ring Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document}, denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}, is the simple undirected graph denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} with vertex set {A∈Mn(R)∗:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{A \in M_n(R) ^{*} : }$$\end{document} there exists B∈Mn(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B \in M_n(R) ^{*} }$$\end{document} such that Tr(AB)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr}(AB)=0}\}$$\end{document} and two distinct vertices A and B are adjacent if and only if Tr(AB)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (AB) = 0}$$\end{document}. First, we prove that Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is 2-connected and hence obtain Eulerian properties of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}. Also we obtain the domination number of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} of a commutative semisimple ring R and obtain the domination number for Γt(Mn(Z2m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(\mathbb Z_2^m))}$$\end{document}. Finally, it is proved that for a commutative ring R with identity, Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is non-planar and classified all finite commutative rings R with identity for which the trace graph has thickness 2.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [1] On the trace graph of matrices
    Sivagami, M.
    Chelvam, T. Tamizh
    ACTA MATHEMATICA HUNGARICA, 2019, 158 (01) : 235 - 250
  • [2] Hamiltonian trace graph of matrices
    Sivagami, M.
    Tamizh Chelvam, T.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [3] Ideal based trace graph of matrices
    Chelvam, T. Tamizh
    Sivagami, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 608 - 616
  • [4] The trace graph of the matrix ring over a finite commutative ring
    F. A. A. Almahdi
    K. Louartiti
    M. Tamekkante
    Acta Mathematica Hungarica, 2018, 156 : 132 - 144
  • [5] The trace graph of the matrix ring over a finite commutative ring
    Almahdi, F. A. A.
    Louartiti, K.
    Tamekkante, M.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 132 - 144
  • [6] AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 x 2 MATRICES
    Ma, Xiaobin
    Wang, Dengyin
    Zhou, Jinming
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (03) : 519 - 532
  • [7] EDGE DOMINATING GRAPH OF A GRAPH
    Basavanagoud, B.
    Hosamani, Sunilkumar M.
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (04): : 603 - 608
  • [8] DOMINATION NUMBERS ON THE BOOLEAN FUNCTION GRAPH OF A GRAPH
    Janakiraman, T. N.
    Muthammai, S.
    Bhanumathi, M.
    MATHEMATICA BOHEMICA, 2005, 130 (02): : 135 - 151
  • [9] On the domination number of a graph and its block graph
    Murugan, E.
    Joseph, J. Paulraj
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [10] ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH
    Murugan, E.
    Joseph, J. Paulraj
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (02): : 391 - 402