Infinite Horizon Stochastic Maximum Principle for Stochastic Delay Evolution Equations in Hilbert Spaces

被引:0
作者
Haoran Dai
Jianjun Zhou
Han Li
机构
[1] Northwest A&F University,Institute of Applied Mathematics, College of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Infinite horizon; Stochastic maximum principle; Stochastic delay evolution equation; Anticipated backward stochastic evolution equation; 93E20; 60H30; 49K27; 49N10;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, we investigate infinite horizon optimal control problems driven by a class of stochastic delay evolution equations in Hilbert spaces and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation (ABSEE). We first establish a priori estimate for the solution to ABSEEs by imposing restriction on unbounded operator A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document}, that is, the operator A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*$$\end{document} is maximal dissipative. In this way, the Itô inequality is applicable in our study, and we can also avoid the problem that neither Itô formula nor energy equation is available. Next, we obtain the existence and uniqueness results of solutions of linear backward stochastic evolution equations on infinite horizon by using approximating methods. Then, the existence and uniqueness results of ABSEEs on infinite horizon is obtained via the fixed-point theory. That is the highlight of innovation in this paper. Eventually, we establish necessary and sufficient conditions for optimality of the control problem on infinite horizon, in the form of Pontryagin’s maximum principle.
引用
收藏
页码:3229 / 3258
页数:29
相关论文
共 37 条
[1]  
Agram N(2013)A maximum principle for infinite horizon delay equations SIAM J. Math. Anal. 45 2499-2522
[2]  
Haadem S(1991)Second-order Hamilton–Jacobi equations in infinite dimensions J. SIAM. Control Optim. 29 474-492
[3]  
Øksendal B(2010)Maximum principle for the stochastic optimal control problem with delay and application Autom. J. IFAC 46 1074-1080
[4]  
Proske F(2000)Some solvable stochastic control problems with delay Stochastics 71 69-89
[5]  
Cannarsa P(2010)HJB equations for the optimal control of differential equations with delays and state constraints, I: regularity of viscosity solutions SIAM J. Control Optim. 48 4910-4937
[6]  
Da Prato G(2011)HJB equations for the optimal control of differential equations with delays and state constraints, II: verification and optimal feedbacks SIAM J. Control Optim. 49 2378-2414
[7]  
Chen L(2002)Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control J. Ann. Prob. 30 1397-1465
[8]  
Wu Z(1996)Global regular solutions of second order Hamilton–Jacobi equations in Hilbert spaces with locally Lipschitz nonlinearities J. Math. Anal. Appl. 198 399-443
[9]  
Elsanosi I(2017)Stochastic optimal control with delay in the control I: solving the hjb equation through partial smoothing SIAM J. Control Optim. 55 2981-3012
[10]  
Øksendal B(2017)Stochastic optimal control with delay in the control II: verification theorem and optimal feedbacks SIAM J. Control Optim. 55 3013-3038