The Minimum General Sum-Connectivity Index of Trees with Given Matching Number

被引:0
作者
Lingping Zhong
Qiuping Qian
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Randić index; General sum-connectivity index; Sum-connectivity index; Tree; Matching number; 05C05; 05C07; 05C35; 92E10;
D O I
暂无
中图分类号
学科分类号
摘要
The general sum-connectivity index of a graph G is defined as χα(G)=∑uv∈E(G)(d(u)+d(v))α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)=\sum _{uv\in E(G)}(d(u)+d(v))^{\alpha }$$\end{document}, where d(u) denotes the degree of a vertex u in G and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a real number. In this paper, we determine the minimum general sum-connectivity indices of trees with n vertices and matching number m, where n=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2m$$\end{document} for α≤-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le -\,2$$\end{document} and 2m≤n≤3m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m\le n\le 3m+1$$\end{document} for α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}, respectively. The corresponding extremal graphs are also characterized.
引用
收藏
页码:1527 / 1544
页数:17
相关论文
共 70 条
[41]  
Randić M(undefined)undefined undefined undefined undefined-undefined
[42]  
Tache RM(undefined)undefined undefined undefined undefined-undefined
[43]  
Tomescu I(undefined)undefined undefined undefined undefined-undefined
[44]  
Tomescu I(undefined)undefined undefined undefined undefined-undefined
[45]  
Arshad M(undefined)undefined undefined undefined undefined-undefined
[46]  
Tomescu I(undefined)undefined undefined undefined undefined-undefined
[47]  
Arshad M(undefined)undefined undefined undefined undefined-undefined
[48]  
Jamil MK(undefined)undefined undefined undefined undefined-undefined
[49]  
Tomescu I(undefined)undefined undefined undefined undefined-undefined
[50]  
Jamil MK(undefined)undefined undefined undefined undefined-undefined