The Minimum General Sum-Connectivity Index of Trees with Given Matching Number

被引:0
作者
Lingping Zhong
Qiuping Qian
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Randić index; General sum-connectivity index; Sum-connectivity index; Tree; Matching number; 05C05; 05C07; 05C35; 92E10;
D O I
暂无
中图分类号
学科分类号
摘要
The general sum-connectivity index of a graph G is defined as χα(G)=∑uv∈E(G)(d(u)+d(v))α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)=\sum _{uv\in E(G)}(d(u)+d(v))^{\alpha }$$\end{document}, where d(u) denotes the degree of a vertex u in G and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a real number. In this paper, we determine the minimum general sum-connectivity indices of trees with n vertices and matching number m, where n=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2m$$\end{document} for α≤-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le -\,2$$\end{document} and 2m≤n≤3m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m\le n\le 3m+1$$\end{document} for α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}, respectively. The corresponding extremal graphs are also characterized.
引用
收藏
页码:1527 / 1544
页数:17
相关论文
共 70 条
[1]  
Akhter S(2016)The sharp bounds on general sum-connectivity index of four operations on graphs J. Inequal. Appl. 2016 241-96
[2]  
Imran M(2016)On the general sum-connectivity index and general Randić index of cacti J. Inequal. Appl. 2016 300-221
[3]  
Akhter S(2017)Bounds for the general sum-connectivity index of composite graphs J. Inequal. Appl. 2017 76-117
[4]  
Imran M(2017)Maximum general sum-connectivity index with Math. Rep. 19 93-703
[5]  
Raza Z(2017) for bicyclic graphs Discrete Appl. Math. 222 213-405
[6]  
Akhter S(2012)On the general sum-connectivity index of trees with given number of pendent vertices Bull. Malays. Math. Sci. Soc. 35 101-217
[7]  
Imran M(2010)On sum-connectivity index of bicyclic graphs J. Math. Chem. 48 697-150
[8]  
Raza Z(2011)Minimum general sum-connectivity index of unicyclic graphs Appl. Math. Lett. 24 402-S340
[9]  
Arshad M(2002)On the general sum-connectivity index of trees Linear Algebra Appl. 342 203-1030
[10]  
Tomescu I(2017)Bounds on the largest eigenvalues of trees with a given size of matching Discrete Appl. Math. 222 143-156