Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits

被引:182
作者
Bialczak, R. C. [1 ]
Ansmann, M. [1 ]
Hofheinz, M. [1 ]
Lucero, E. [1 ]
Neeley, M. [1 ]
O'Connell, A. D. [1 ]
Sank, D. [1 ]
Wang, H. [1 ]
Wenner, J. [1 ]
Steffen, M. [1 ]
Cleland, A. N. [1 ]
Martinis, J. M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
SUPERCONDUCTING QUBITS; STATE;
D O I
10.1038/NPHYS1639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum gates must perform reliably when operating on standard input basis states and on complex superpositions thereof. Experiments using superconducting qubits have validated truth tables for particular implementations of, for example, the controlled-NOT gate(1,2), but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography(3,4) (QPT) to fully characterize the performance of a universal entangling gate between two superconducting qubits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction and ideally simultaneous single-shot measurement of output states. In recent work, it has been proposed to use QPT to probe noise properties' and time dynamics(6) of qubit systems and to apply techniques from control theory to create scalable qubit benchmarking protocols(7,8). We use QPT to measure the fidelity and noise properties' of an entangling gate. In addition to demonstrating a promising fidelity, our entangling gate has an on-to-off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as QPT has previously been demonstrated only with single solid-state qubits(9-11).
引用
收藏
页码:409 / 413
页数:5
相关论文
共 29 条
  • [1] 1/f flux noise in Josephson phase qubits
    Bialczak, Radoslaw C.
    McDermott, R.
    Ansmann, M.
    Hofheinz, M.
    Katz, N.
    Lucero, Erik
    Neeley, Matthew
    O'Connell, A. D.
    Wang, H.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [2] Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
  • [3] Simplified quantum process tomography
    Branderhorst, M. P. A.
    Nunn, J.
    Walmsley, I. A.
    Kosut, R. L.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [4] Practical scheme for quantum computation with any two-qubit entangling gate
    Bremner, MJ
    Dawson, CM
    Dodd, JL
    Gilchrist, A
    Harrow, AW
    Mortimer, D
    Nielsen, MA
    Osborne, TJ
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (24)
  • [5] Realization of quantum process tomography in NMR
    Childs, AM
    Chuang, IL
    Leung, DW
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 123141 - 123147
  • [6] Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit
    Chow, J. M.
    Gambetta, J. M.
    Tornberg, L.
    Koch, Jens
    Bishop, Lev S.
    Houck, A. A.
    Johnson, B. R.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [7] Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
  • [8] Implementing Qubits with Superconducting Integrated Circuits
    Devoret, Michel H.
    Martinis, John M.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 163 - 203
  • [9] GELLER MR, 2007, NATO SCI SERIES 2, P171
  • [10] Quantum process tomography and Linblad estimation of a solid-state qubit
    Howard, M
    Twamley, J
    Wittmann, C
    Gaebel, T
    Jelezko, F
    Wrachtrup, J
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8