Geometric Tomography with Topological Guarantees

被引:0
|
作者
Omid Amini
Jean-Daniel Boissonnat
Pooran Memari
机构
[1] École Normale Supérieure,CNRS
[2] INRIA Sophia Antipolis–Méditerranée,DMA
[3] Télécom ParisTech,CNRS
来源
关键词
Shape reconstruction from cross-sections; Geometric tomography; Topological guaranties; Homotopy equivalence; Reliable reconstruction; Sampling conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of reconstructing a compact 3-manifold (with boundary) embedded in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R ^3$$\end{document} from its cross-sections S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S }$$\end{document} with a given set of cutting planes P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P $$\end{document} having arbitrary orientations. In this paper, we analyse a very natural reconstruction strategy: a point x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in \mathbb R ^3$$\end{document} belongs to the reconstructed object if (at least one of) its nearest point(s) in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P $$\end{document} belongs to S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S }$$\end{document}. We prove that under appropriate sampling conditions, the output of such an algorithm preserves the homotopy type of the original object. Using the homotopy equivalence, we also show that the reconstructed object is homeomorphic (and isotopic) to the original object. This is the first time that 3-dimensional shape reconstruction from cross-sections comes with theoretical guarantees.
引用
收藏
页码:821 / 856
页数:35
相关论文
共 50 条
  • [31] Geometric and Topological Properties of Fractal Networks
    Mendez-Bermudez, J. A.
    Reyes, Rosalio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [32] Geometric and topological entropies of sphere packing
    Department of Physics and Astronomy, Stony Brook University, Stony Brook
    NY
    11794, United States
    不详
    NY
    11973, United States
    Phys. Rev. E, 1
  • [33] Geometric and topological aspects of vortex motion
    Ricca, RL
    INTRODUCTION TO THE GEOMETRY AND TOPOLOGY OF FLUID FLOWS, 2001, 47 : 203 - 228
  • [34] Geometric classification of topological quantum phases
    Kohler, C.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 237 (4-5):
  • [35] Geometric quantization of topological gauge theories
    Barcelos-Neto, J.
    De Souza, S. M.
    Zeitschrift fuer Physik C: Particles and Fields, 1995, 66 (1-2):
  • [36] Geometric and topological entropies of sphere packing
    Logan, Jack A.
    Tkachenko, Alexei, V
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [37] Universal topological representation of geometric patterns
    Ohmori, Shousuke
    Yamazaki, Yoshihiro
    Yamamoto, Tomoyuki
    Kitada, Akihiko
    PHYSICA SCRIPTA, 2019, 94 (10)
  • [38] Topological and geometric decomposition of nematic textures
    Copar, Simon
    Zumer, Slobodan
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [39] Extremal topological and geometric problems for polyominoes
    Malen, Greg
    Roldan-Roa, Erika Berenice
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 32
  • [40] TOPOLOGICAL AND GEOMETRIC PROPERTY OF MATRIX ALGEBRA
    Jipu Ma (Harbin Normal University
    Analysis in Theory and Applications, 2007, (02) : 196 - 200