Geometric Tomography with Topological Guarantees

被引:0
|
作者
Omid Amini
Jean-Daniel Boissonnat
Pooran Memari
机构
[1] École Normale Supérieure,CNRS
[2] INRIA Sophia Antipolis–Méditerranée,DMA
[3] Télécom ParisTech,CNRS
来源
关键词
Shape reconstruction from cross-sections; Geometric tomography; Topological guaranties; Homotopy equivalence; Reliable reconstruction; Sampling conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of reconstructing a compact 3-manifold (with boundary) embedded in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R ^3$$\end{document} from its cross-sections S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S }$$\end{document} with a given set of cutting planes P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P $$\end{document} having arbitrary orientations. In this paper, we analyse a very natural reconstruction strategy: a point x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in \mathbb R ^3$$\end{document} belongs to the reconstructed object if (at least one of) its nearest point(s) in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P $$\end{document} belongs to S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S }$$\end{document}. We prove that under appropriate sampling conditions, the output of such an algorithm preserves the homotopy type of the original object. Using the homotopy equivalence, we also show that the reconstructed object is homeomorphic (and isotopic) to the original object. This is the first time that 3-dimensional shape reconstruction from cross-sections comes with theoretical guarantees.
引用
收藏
页码:821 / 856
页数:35
相关论文
共 50 条
  • [1] Geometric Tomography with Topological Guarantees
    Amini, Omid
    Boissonnat, Jean-Daniel
    Memari, Pooran
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (04) : 821 - 856
  • [2] Geometric Tomography With Topological Guarantees
    Amini, Omid
    Boissonnat, Jean-Daniel
    Memari, Pooran
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 287 - 296
  • [3] Geometric and Topological Guarantees for the WRAP Reconstruction Algorithm
    Ramos, Edgar A.
    Sadri, Bardia
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1086 - 1095
  • [4] Geometric Reconstruction of Implicitly Defined Surfaces and Domains with Topological Guarantees
    Engwer, Christian
    Nuessing, Andreas
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 44 (02):
  • [5] Digital geometry processing with topological guarantees
    Manocha, Dinesh
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2008, 4992 : 1 - 3
  • [6] Guarantees for Spontaneous Synchronization on Random Geometric Graphs
    Abdalla, Pedro
    Bandeira, Afonso S.
    Invernizzi, Clara
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 779 - 790
  • [7] TOPOLOGICAL GEOMETRIC LATTICES
    CHOE, TH
    GROH, H
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1989, 59 : 39 - 42
  • [8] Geometric and topological inference
    Hunacek, Mark
    MATHEMATICAL GAZETTE, 2021, 105 (562): : 184 - 185
  • [9] Resolution Guarantees in Electrical Impedance Tomography
    Harrach, Bastian
    Ullrich, Marcel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1513 - 1521
  • [10] Coarse-to-fine surface simplification with geometric guarantees
    Boissonnat, JD
    Cazals, F
    COMPUTER GRAPHICS FORUM, 2001, 20 (03) : C490 - C499