Glass transitions in crosslinked epoxy networksKinetic aspects

被引:0
作者
S. Tarifa
A. Bouazizi
机构
[1] Ecole Nationale Supérieure de Chimie de Toulouse,Laboratoire de Physico
[2] Laboratoire de Physique des Semiconducteurs,Chimie des Hauts Polymères
来源
Journal of thermal analysis | 1997年 / 48卷
关键词
DSC analysis; epoxy resins; heating rate; glass transition;
D O I
暂无
中图分类号
学科分类号
摘要
Epoxy resins of DGEBA type were thermally cured with diaminodiphenylmethane as crosslinking agent, and then analysed by Differential Scanning calorimetry (DSC) at various heating rates in order to determine the glass transition temperatureTg of the final networks. First it was shown that during cyclingTg is shifted towards higher values up to a maximum or\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$T_{g_\infty }$$ \end{document}. Such a change is attributed to an increasing extent of cure which develops during the thermal analysis, and also to relaxation processes thermally activated inside the polymeric matrix. Then the dependence of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$T_{g_\infty }$$ \end{document} on the heating rateq imposed by the DSC apparatus was presented forq changing from 0.1 to10‡C min−1. At heating rates exceeding 3‡C min−1 only the classical temperatureTg was detected, but at smallerq values, an additional endothermic transition was revealed, located at higher temperature and linked to a physical aging-like phenomenon, which takes place at low heating rates. The plot of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$T_{g_\infty }$$ \end{document} against logq is divided into two quasi-linear parts on each side ofq=3‡C min−1. In conclusions, an equation was given to describe the\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$T_{g_\infty }$$ \end{document}vs. logq function.
引用
收藏
页码:297 / 307
页数:10
相关论文
共 7 条
  • [1] DiBenedetto A. T.(1987)undefined J. Polym. Sci. B: Polym. Phys. 25 1949-undefined
  • [2] Plazek D. J.(1990)undefined J. Polym. Sci. B: Polym. Phys. 28 431-undefined
  • [3] Frunda N. J.(1972)undefined J. Polym. Sci. A-2 1255-undefined
  • [4] Petrie S. E. B.(1988)undefined Polymer 29 1812-undefined
  • [5] Lee A.(1957)undefined Anal. Chem. 29 1702-undefined
  • [6] Mckenna G. B.(undefined)undefined undefined undefined undefined-undefined
  • [7] Kissinger H. E.(undefined)undefined undefined undefined undefined-undefined