Pointwise H,Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( H,\Phi \right) $$\end{document} Strong Approximation by Fourier Series of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} Integrable Functions

被引:0
作者
Włodzimierz Łenski
机构
[1] University of Zielona Góra,Faculty of Mathematics, Computer Science and Econometrics
关键词
Strong approximation; rate of pointwise strong summability; Orlicz spaces; 42A24;
D O I
10.1007/s00025-018-0892-8
中图分类号
学科分类号
摘要
We will present an estimation of the generalized strong mean H,Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( H,\Phi \right) $$\end{document} as an approximation version of the Totik type generalization of the results of J. Marcinkiewicz and A. Zygmund on strong summability of Fourier series of integrable functions. As a measure of such approximation we will use the function constructed by function Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document} complementary to Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Phi $$\end{document} on the base of definition of the Gabisoniya points. Some corollary and remark will also be given.
引用
收藏
相关论文
共 17 条
[1]  
Gabisoniya OD(1973)On the points of strong summability of Fourier series Mat. Zam. 14 615-626
[2]  
Gabisoniya OD(1992)Points of strong summability of Fourier series Ukrainskii Matematicheskii Zhurnal 44 1020-1031
[3]  
Gogoladze LD(1988)On strong summability almost everywhere Mat. Sb. (N.S.) 135 158-168
[4]  
Hardy GH(1913)Sur la série de Fourier d’une function a caré sommable Comptes Rendus 28 1307-1309
[5]  
Littlewood JE(1971)Inequalities for Fourier transforms Stud. Math. Trans. XXXVII 245-276
[6]  
Jodeit M(1990)On the strong approximation by Math. Nachr. 146 207-220
[7]  
Torchinsky A(2007)-means of Fourier series Acta Math. Hung. 115 215-233
[8]  
Łenski W(1939)Pointwise strong and very strong approximation of Fourier series J. Lond. Math. Soc. 14 162-168
[9]  
Łenski W(1988)Sur la sommabilite forte de series de Fourier Izv. Vyssh. Uchebn. Zaved. Mat. 9 58-62
[10]  
Marcinkiewicz J(2014)Characterization of points J. Inequal. Appl. 2014 390-147