Limit Cycles Bifurcating from the Period Annulus of Quasi-Homogeneous Centers

被引:0
作者
Weigu Li
Jaume Llibre
Jiazhong Yang
Zhifen Zhang
机构
[1] Peking University,Department of Mathematics
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Journal of Dynamics and Differential Equations | 2009年 / 21卷
关键词
Homogeneous centers; Quasi-homogeneous centers; Limit cycles; Primary 34C07; 34C08; 37G15;
D O I
暂无
中图分类号
学科分类号
摘要
We provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of any homogeneous and quasi-homogeneous center, which can be obtained using the Abelian integral method of first order. We show that these bounds are the best possible using the Abelian integral method of first order. We note that these centers are in general non-Hamiltonian. As a consequence of our study we provide the biggest known number of limit cycles surrounding a unique singular point in terms of the degree n of the system for arbitrary large n.
引用
收藏
页码:133 / 152
页数:19
相关论文
共 89 条
[1]  
Arnold V.I.(1977)Loss of stability of self-oscillation close to resonance and versal deformations of equivariant vector fields Funct. Anal. Appl. 11 1-10
[2]  
Bogdanov R.I.(1981)Bifurcation of the limit cycle of a family of a planar vector fields Selecta Math. Soviet 1 373-387
[3]  
Bogdanov R.I.(1981)Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues Selecta Math. Soviet 1 389-421
[4]  
Chavarriga J.(1999)On the integrability of two-dimensional flows J. Diff. Equat. 157 163-182
[5]  
Giacomini H.(2002)The cyclicity of period annulus of degenerate quadratic Hamiltonian system with elliptic segment loops Ergodic Theory Dynam. Systems 22 349-374
[6]  
Giné J.(1995)Polynomial systems: a lower bound for the Hilbert numbers Proc. R. Soc. Lond. A 450 219-224
[7]  
Llibre J.(1990)Algebraic and topological classification of the homogeneous cubic vector fields in the plane J. Math. Anal. Appl. 147 420-448
[8]  
Chow S.N.(1985)A codimension two bifurcation with a third order Picard–Fuchs equation J. Diff. Equat. 59 243-256
[9]  
Li C.(1987)Abelian integrals for quadratic vector fields J. Reine Angew. Math. 382 165-180
[10]  
Yi Y.(1987)Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case Ergodic Theory Dynam. Systems 7 375-413