Let P be a linear partial differential operator with constant coefficients. For a weight function ω and an open subset Ω of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^N}$$\end{document} , the class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{E}_{P,\{\omega\}}(\Omega)}$$\end{document} of Roumieu type involving the successive iterates of the operator P is considered. The completeness of this space is characterized in terms of the hypoellipticity of P. Results of Komatsu and Newberger-Zielezny are extended. Moreover, for weights ω satisfying a certain growth condition, this class coincides with a class of ultradifferentiable functions if and only if P is elliptic. These results remain true in the Beurling case \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{E}_{P,(\omega)}(\Omega)}$$\end{document}.