Iterates and Hypoellipticity of Partial Differential Operators on Non-Quasianalytic Classes

被引:0
|
作者
Jordi Juan-Huguet
机构
[1] Universidad Politécnica de Valencia,Instituto de Matemática Pura y Aplicada IUMPA
来源
Integral Equations and Operator Theory | 2010年 / 68卷
关键词
35B65; 35H10; 46F05; 47F05; Hypoelliptic polynomial; elliptic differential operator; non-quasianalytic classes; iterates of an operator;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a linear partial differential operator with constant coefficients. For a weight function ω and an open subset Ω of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} , the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}_{P,\{\omega\}}(\Omega)}$$\end{document} of Roumieu type involving the successive iterates of the operator P is considered. The completeness of this space is characterized in terms of the hypoellipticity of P. Results of Komatsu and Newberger-Zielezny are extended. Moreover, for weights ω satisfying a certain growth condition, this class coincides with a class of ultradifferentiable functions if and only if P is elliptic. These results remain true in the Beurling case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}_{P,(\omega)}(\Omega)}$$\end{document}.
引用
收藏
页码:263 / 286
页数:23
相关论文
共 5 条