Twisted Hilbert spaces of 3d supersymmetric gauge theories

被引:0
作者
Mathew Bullimore
Andrea Ferrari
机构
[1] Mathematics Department,Mathematical Institute
[2] Durham University,undefined
[3] Science Laboratories,undefined
[4] University of Oxford,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Supersymmetric Gauge Theory; Supersymmetry and Duality; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study aspects of 3d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric gauge theories on the product of a line and a Riemann surface. Performing a topological twist along the Riemann surface leads to an effective supersymmetric quantum mechanics on the line. We propose a construction of the space of supersymmetric ground states as a graded vector space in terms of a certain cohomology of generalized vortex moduli spaces on the Riemann surface. This exhibits a rich dependence on deformation parameters compatible with the topological twist, including superpotentials, real mass parameters, and background vector bundles associated to flavour symmetries. By matching spaces of supersymmetric ground states, we perform new checks of 3d abelian mirror symmetry.
引用
收藏
相关论文
共 85 条
  • [1] Benini F(2015)A topologically twisted index for three-dimensional supersymmetric theories JHEP 07 127-undefined
  • [2] Zaffaroni A(2017)Supersymmetric partition functions on Riemann surfaces Proc. Symp. Pure Math. 96 13-undefined
  • [3] Benini F(2016)Comments on twisted indices in 3d supersymmetric gauge theories JHEP 08 059-undefined
  • [4] Zaffaroni A(1997)Aspects of N = 2 supersymmetric gauge theories in three-dimensions Nucl. Phys. B 499 67-undefined
  • [5] Closset C(1997)Dynamics of N = 2 supersymmetric gauge theories in three-dimensions Nucl. Phys. B 500 163-undefined
  • [6] Kim H(1997)Mirror symmetry in three-dimensional theories, SL(2, Nucl. Phys. B 493 148-undefined
  • [7] Aharony O(1996)) and D-brane moduli spaces Phys. Lett. B 387 513-undefined
  • [8] Hanany A(2013)Mirror symmetry in three-dimensional gauge theories Adv. Theor. Math. Phys. 17 975-undefined
  • [9] Intriligator KA(2014)3-Manifolds and 3d Indices Commun. Math. Phys. 325 367-undefined
  • [10] Seiberg N(2017)Gauge Theories Labelled by Three-Manifolds JHEP 07 071-undefined