Minimal classes and maximal class inp-groups

被引:0
作者
Patrizia Longobardi
Mercede Maj
Avinoam Mann
机构
[1] Università degli Studi di Napoli,Dipartimento di Matematica e Applicazioni
[2] Università degli Studi di Salerno,Dipartimento di Ingegneria dell'Informazione e Matematica Applicata
[3] The Hebrew University of Jerusalem,Einstein Institute of Mathematics
来源
Israel Journal of Mathematics | 1999年 / 110卷
关键词
Normal Subgroup; Conjugacy Class; Maximal Subgroup; Minimal Breadth; Maximal Class;
D O I
暂无
中图分类号
学科分类号
摘要
The number of conjugacy classes of a given size (not 1) in ap-group is divisible byp-1. We study groups in which the number of classes of minimal size is exactlyp-1, and characterise metabelian groups and groups of maximal class with this property.
引用
收藏
页码:93 / 102
页数:9
相关论文
共 17 条
[1]  
Blackburn N.(1958)On a special class of p-groups Acta Mathematica 100 45-92
[2]  
Brandl R.(1988)The Dilworth number of subgroup lattices Archiv der Mathematik (Basel) 50 502-510
[3]  
Fernández-Alcober G. A.(1995)The exact lower bound for the degree of commutativity of a p-group of maximal class Journal of Algebra 174 523-530
[4]  
Fernández-Alcober G. A.(1998)On the order of p-groups of abundance zero Journal of Algebra 201 392-400
[5]  
Shepherd R. T.(1986)Some normally monomial p-groups of maximal class and large derived length The Quarterly Journal of Mathematics. Oxford. Second Series 37 49-54
[6]  
Kovacs L. G.(1981)Some p-groups of Frobenius and extraspecial type Israel Journal of Mathematics 40 350-364
[7]  
Leedham-Green C. R.(1983)Finite p-groups with unique maximal classes Proceedings of the Edinburgh Mathematical Society 26 233-239
[8]  
Macdonald I. D.(1978)Conjugacy classes in finite groups Israel Journal of Mathematics 31 78-84
[9]  
Macdonald I. D.(1990)Extreme elements of finite p-groups Rendiconti del Seminario Matematico della Università di Padova 83 45-54
[10]  
Mann A.(1980)Nilpotent groups with lower central factors of minimal ranks Algebra i Logika 19 701-706