On the smoothness in the weighted Triebel-Lizorkin and Besov spaces via the continuous wavelet transform with rotations

被引:0
|
作者
Navarro, Jaime [1 ]
Cruz-Barriguete, Victor A. [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Ciencias Basicas, Av San Pablo Xalpa 180, Mexico City 02128, DF, Mexico
关键词
Continuous wavelet transform with rotations; Weighted Besov spaces; Weighted Triebel-Lizorkin spaces; Weak solution; Differential operator; CONVERGENCE;
D O I
10.1007/s11868-024-00595-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to show that if u is an element of W-m,W- p (R-n) is a weak solution of Qu = f where f is an element of X-p,k(r,q) (R-n), then u is an element of X-p,k(m+r,q) (R-n) with 1 < p, q < infinity, 0 < r < 1, k is a temperate weight function in the Hormander sense, Q = Sigma (|beta|<= m) c(beta)(partial derivative beta) is a linear partial differential operator of order m >= 0 with non-zero constant coefficients c(beta), and where X-p,X-k (r,q) (R-n) is either the weighted Triebel-Lizorkin or the weighted Besov space. The way to prove this result is based on the boundedness of the continuous wavelet transform with rotations.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Continuous wavelet transform on Triebel-Lizorkin spaces
    Baison-Olmo, Antonio Luis
    Cruz-Barriguete, Victor Alberto
    Navarro, Jaime
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3159 - 3170
  • [3] Capacity in Besov and Triebel-Lizorkin spaces with generalized smoothness
    Karak, Nijjwal
    Mondal, Debarati
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (06) : 973 - 985
  • [4] Lebesgue Points of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness
    Li, Ziwei
    Yang, Dachun
    Yuan, Wen
    MATHEMATICS, 2021, 9 (21)
  • [5] Haar functions in weighted Besov and Triebel-Lizorkin spaces
    Malecka, Agnieszka
    JOURNAL OF APPROXIMATION THEORY, 2015, 200 : 1 - 27
  • [6] Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces
    Kyriazis, George
    Petrushev, Pencho
    Xu, Yuan
    STUDIA MATHEMATICA, 2008, 186 (02) : 161 - 202
  • [7] Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    POSITIVITY, 2012, 16 (02) : 213 - 244
  • [8] Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with APloc-weights
    Izuki, Mitsuo
    Sawano, Yoshihiro
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (02) : 656 - 673
  • [9] WAVELET CHARACTERIZATION OF WEIGHTED TRIEBEL-LIZORKIN SPACES
    Deng Donggao Xu Ming Yan Lixin (Zhongshan University
    ApproximationTheoryandItsApplications, 2002, (04) : 76 - 92
  • [10] Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces
    Izuki, Mitsuo
    Sawano, Yoshihiro
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 103 - 126