Symmetry Breaking and Restoration in the Ginzburg–Landau Model of Nematic Liquid Crystals

被引:0
作者
Marcel G. Clerc
Michał Kowalczyk
Panayotis Smyrnelis
机构
[1] Universidad de Chile,Departamento de Física, FCFM
[2] Universidad de Chile,Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS)
[3] Universidad de Chile,Centro de Modelamiento Matemático (UMI 2807 CNRS)
来源
Journal of Nonlinear Science | 2018年 / 28卷
关键词
Symmetry breaking; Ginzburg–Landau; Vortex; Liquid crystals; 35B05; 35B06; 35B25; 35Q56; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study qualitative properties of global minimizers of the Ginzburg–Landau energy which describes light–matter interaction in the theory of nematic liquid crystals near the Fréedericksz transition. This model depends on two parameters: ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} which is small and represents the coherence scale of the system and a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0$$\end{document} which represents the intensity of the applied laser light. In particular, we are interested in the phenomenon of symmetry breaking as a and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} vary. We show that when a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0$$\end{document} the global minimizer is radially symmetric and unique and that its symmetry is instantly broken as a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} and then restored for sufficiently large values of a. Symmetry breaking is associated with the presence of a new type of topological defect which we named the shadow vortex. The symmetry breaking scenario is a rigorous confirmation of experimental and numerical results obtained earlier in Barboza et al. (Phys Rev E 93(5):050201, 2016).
引用
收藏
页码:1079 / 1107
页数:28
相关论文
共 66 条
[1]  
Aftalion A(2005)Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate Arch. Ration. Mech. Anal. 178 247-286
[2]  
Alama S(2004)Existence of vortex-free solutions in the Painlevé boundary layer of a Bose–Einstein condensate J. Math. Pures Appl. (9) 83 765-801
[3]  
Bronsard L(2011)Non-existence of vortices in the small density region of a condensate J. Funct. Anal. 260 2387-2406
[4]  
Aftalion A(2001)Vortex energy and vortex bending for a rotating Bose–Einstein condensate Phys. Rev. A 64 043611-683
[5]  
Blanc X(2015)Optical vortex induction via light–matter interaction in liquid-crystal media Adv. Opt. Photon. 7 635-641
[6]  
Aftalion A(2013)Harnessing optical vortex lattices in nematic liquid crystals Phys. Rev. Lett. 111 093902-51
[7]  
Jerrard RL(2016)Light–matter interaction induces a shadow vortex Phys. Rev. E 93 050201-306
[8]  
Royo-Letelier J(2012)Vortex induction via anisotropy stabilized light–matter interaction Phys. Rev. Lett. 109 143901-162
[9]  
Aftalion A(2015)Optical vortex induction via light–matter interaction in liquid-crystal medial Adv. Opt. Photon. 7 635-523
[10]  
Rivière T(2014)Light–matter interaction induces a single positive vortex with swirling arms Philos. Trans. R. Soc. A 20140019-1293