Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance

被引:0
|
作者
Xianchao Yang
Ying Lu
Baolin Liu
Jianquan Yao
机构
[1] Tianjin University,College of Precision Instrument and Opto
来源
Plasmonics | 2017年 / 12卷
关键词
Photonic crystal fiber; Surface plasmon resonance; Graphene-Ag bimetallic layers; Birefringence; Wavelength and amplitude interrogations;
D O I
暂无
中图分类号
学科分类号
摘要
We present and numerically characterize a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor. By adjusting the air hole sizes of the PCF, the effective refractive index (RI) of core-guided mode can be tuned effectively and the sensor exhibits strong birefringence. Alternate holes coated with graphene-Ag bimetallic layers in the second layer are used as analyte channels, which can avoid adjacent interference and improve the signal to noise ratio (SNR). The graphene’s good features can not only solve the problem of silver oxidation but also increase the absorption of molecules. We theoretically analyze the influence of the air hole sizes of the PCF and the thicknesses of graphene layer and Ag layer on the performance of the designed sensor using wavelength and amplitude interrogations. The wavelength sensitivity we obtained is as high as 2520 nm/RIU with the resolution of 3.97 × 10−5 RIU, which can provide a reference for developing a high-sensitivity, real-time, fast-response, and distributed SPR sensor.
引用
收藏
页码:489 / 496
页数:7
相关论文
共 50 条
  • [31] D-Shaped Photonic Crystal Fiber based Surface Plasmon Resonance Sensor
    Yasli, Ahmet
    Ademgil, Huseyin
    Haxha, Shyqyri
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [32] Temperature and Magnetic Field Sensor Based on Photonic Crystal Fiber and Surface Plasmon Resonance
    Li J.
    Pei L.
    Wang J.
    Wu L.
    Ning T.
    Zheng J.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (02):
  • [33] Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance
    Wu, Junjun
    Li, Shuguang
    Shi, Min
    Feng, Xinxing
    OPTICAL FIBER TECHNOLOGY, 2018, 43 : 90 - 94
  • [34] High-sensitivity photonic crystal fiber sensor based on surface plasmon resonance
    FENG Huanting
    GAO Jiachen
    MING Xianbing
    Optoelectronics Letters, 2024, 20 (07) : 393 - 399
  • [35] Triple Analyte Detection with Photonic Crystal Fiber based Surface Plasmon Resonance Sensor
    Yasli, Ahmet
    Ademgil, Huseyin
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [36] Temperature and Magnetic Field Sensor Based on Photonic Crystal Fiber and Surface Plasmon Resonance
    Li Jiahuan
    Pei Li
    Wang Jianshuai
    Wu Liangying
    Ning Tigang
    Zheng Jingjing
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (02):
  • [37] A novel birefringent photonic crystal fiber surface plasmon resonance sensor
    Liu, Meitong
    Guo, Yubin
    Sun, Tiegang
    Song, Zhilei
    SIXTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2018), 2018, 10827
  • [38] Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires
    Fu, Xiangyong
    Lu, Ying
    Huang, Xiaohui
    Hao, Congjing
    Wu, Baoqun
    Yao, Jianquan
    OPTICA APPLICATA, 2011, 41 (04) : 941 - 951
  • [39] A surface plasmon resonance sensor based on a multi-core photonic crystal fiber
    Zhang P.-P.
    Yao J.-Q.
    Cui H.-X.
    Lu Y.
    Optoelectronics Letters, 2013, 9 (5) : 342 - 345
  • [40] A PHOTONIC CRYSTAL FIBER BASED ON SURFACE PLASMON RESONANCE TEMPERATURE SENSOR WITH LIQUID CORE
    Bing, P. B.
    Li, Z. Y.
    Yao, J. Q.
    Lu, Y.
    Di, Z. G.
    MODERN PHYSICS LETTERS B, 2012, 26 (13):