Some new conditions for the solvability of the Cauchy problem for systems of linear functional-differential equations

被引:0
作者
Dil'naya N.Z. [1 ]
Ronto A.N. [1 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
关键词
Cauchy Problem; Unique Solvability; Efficient Condition;
D O I
10.1007/s11253-005-0068-z
中图分类号
学科分类号
摘要
We establish efficient conditions sufficient for the unique solvability of certain classes of Cauchy problems for systems of linear functional-differential equations. The conditions obtained are optimal in a certain sense. © 2004 Springer Science+Business Media, Inc.
引用
收藏
页码:1033 / 1053
页数:20
相关论文
共 8 条
[1]  
Bravyi E., Hakl R., Lomtatidze A., Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations, Czech. Math. J., 52, 3, pp. 513-530, (2002)
[2]  
Hakl R., Lomtatidze A., Puza B., On nonnegative solutions of first order scalar functional differential equations, Mem. Differ. Equ. Math. Phys., 23, pp. 51-84, (2001)
[3]  
Ronto A.N., Exact solvability conditions for the Cauchy problem for systems of first-order linear functional-differential equations determined by (σ<sub>1</sub>, σ<sub>2</sub>,...,σ<sub>n</sub>
[4]  
τ)-positive operators, Ukr. Mat. Zh., 55, 11, pp. 1541-1568, (2003)
[5]  
Krein M.G., Rutman M.A., Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk, 3, 1, pp. 3-95, (1948)
[6]  
Transl. Amer. Math. Soc., 26, (1956)
[7]  
Krasnosel'skii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Approximate Solution of Operator Equations, (1969)
[8]  
Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Introduction to the Theory of Functional Differential Equations, (1991)