On recursions for coefficients of mock theta functions

被引:1
作者
Chan S.H. [1 ]
Mao R. [2 ]
Osburn R. [3 ,4 ]
机构
[1] Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, Singapore
[2] School of Mathematical Sciences, Soochow University, SuZhou, 215006, PR
[3] School of Mathematics and Statistics, University College Dublin, Dublin 4, Belfield
[4] IHÉS, Le Bois-Marie, 35, route de Chartres, Bures-sur-Yvette
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Lambert series; Mock theta functions; q-series identities;
D O I
10.1007/s40993-015-0030-6
中图分类号
学科分类号
摘要
Abstract: We use a generalized Lambert series identity due to the first author to present q-series proofs of recent results of Imamoğlu, Raum and Richter concerning recursive formulas for the coefficients of two 3rd order mock theta functions. Additionally, we discuss an application of this identity to other mock theta functions. Mathematics Subject Classification: Primary: 33D15; Secondary: 11F30. © 2015, The Author(s).
引用
收藏
相关论文
共 50 条
  • [21] The Fourth and Eighth Order Mock Theta Functions
    Srivastava, Bhaskar
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 165 - 175
  • [22] On second and eighth order mock theta functions
    Su-Ping Cui
    Nancy S. S. Gu
    Li-Jun Hao
    [J]. The Ramanujan Journal, 2019, 50 : 393 - 422
  • [23] GENERALIZATIONS OF MOCK THETA FUNCTIONS AND RADIAL LIMITS
    Cui, Su-Ping
    Gu, Nancy S. S.
    Su, Chen-Yang
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (08) : 3317 - 3329
  • [24] Symmetric relations related to mock theta functions
    Wang, Chun
    [J]. RAMANUJAN JOURNAL, 2025, 66 (04)
  • [25] On two fifth order mock theta functions
    Zwegers, Sander
    [J]. RAMANUJAN JOURNAL, 2009, 20 (02) : 207 - 214
  • [26] On second and eighth order mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Hao, Li-Jun
    [J]. RAMANUJAN JOURNAL, 2019, 50 (02) : 393 - 422
  • [27] A Note on Continued Fractions and Mock Theta Functions
    Srivastava, Pankaj
    Gupta, Priya
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (01): : 173 - 184
  • [28] ON THE TENTH-ORDER MOCK THETA FUNCTIONS
    Mortenson, Eric T.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (01) : 44 - 62
  • [29] Mock theta functions and Appell-Lerch sums
    Chen, Bin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [30] Combinatorial identities for tenth order mock theta functions
    Megha Goyal
    M Rana
    [J]. Proceedings - Mathematical Sciences, 2019, 129