Non-geometric vacua of the Spin(32)/ℤ2 heterotic string and little string theories

被引:0
作者
Anamaría Font
Christoph Mayrhofer
机构
[1] Universidad Central de Venezuela,Departamento de Física, Centro de Física Teórica y Computacional, Facultad de Ciencias
[2] Albert-Einstein-Institut,Max
[3] Sommerfeld Center for Theoretical Physics,Planck
来源
Journal of High Energy Physics | / 2017卷
关键词
Conformal Field Models in String Theory; F-Theory; String Duality; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) non-geometric vacua of the Spin(32)/ℤ2 heterotic string which can be understood as fibrations of genus-two curves over a complex one-dimensional base. The 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) theories living on the defects that arise when the genus-two fiber degenerates at a point of the base are analyzed by dualizing to F-theory on elliptic K3-fibered non-compact Calabi-Yau threefolds. We consider all possible degenerations of genus-two curves and systematically attempt to resolve the singularities of the dual threefolds. As in the analogous non-geometric vacua of the E8 × E8 heterotic string, we find that many of the resulting dual threefolds contain singularities which do not admit a crepant resolution. When the singularities can be resolved crepantly, we determine the emerging effective theories which turn out to be little string theories at a generic point on their tensor branch. We also observe a form of duality in which theories living on distinct defects are the same.
引用
收藏
相关论文
共 117 条
  • [1] Hellerman S(2004)Geometric constructions of nongeometric string theories JHEP 01 024-undefined
  • [2] McGreevy J(2010)Geometries, Non-Geometries and Fluxes Adv. Theor. Math. Phys. 14 1515-undefined
  • [3] Williams B(2015)3 Lett. Math. Phys. 105 1085-undefined
  • [4] McOrist J(2015)Nongeometric F-theory-heterotic duality Phys. Rev. D 91 175-undefined
  • [5] Morrison DR(2016) 6 JHEP 08 290-undefined
  • [6] Sethi S(2017)The Satake sextic in F-theory J. Geom. Phys. 120 046-undefined
  • [7] Malmendier A(2017)Ubiquity of non-geometry in heterotic compactifications JHEP 03 41-undefined
  • [8] Morrison DR(1986) < 10 Phys. Lett. B 169 127-undefined
  • [9] Gu J(2016)The monodromy of T-folds and T-fects JHEP 09 355-undefined
  • [10] Jockers H(1966)On pencils of curves of genus two Topology 5 143-undefined