A general stability result for swelling porous elastic media with nonlinear damping and nonlinear delay term

被引:0
作者
Soufyane A. [1 ]
Afilal M. [2 ]
Apalara T. [3 ]
Rhofir K. [4 ]
机构
[1] Department of Mathematics, College of Sciences, University of Sharjah, P.O.Box 27272, Sharjah
[2] Département de Mathématiques et Informatique, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech
[3] Mathematics Department, University of Hafr Al-Batin (UHB), Hafr Al-Batin
[4] LASTI-ENSA, Sultan Moulay Slimane University, Khouribga
关键词
General decay; Nonlinear damping; Nonlinear delay; Swelling porous problem;
D O I
10.1007/s13370-023-01126-9
中图分类号
学科分类号
摘要
We consider a swelling porous-elastic system with single nonlinear damping and nonlinear delay term in the elastic equation. We establish the general decay result using multiplier method. © 2023, African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature.
引用
收藏
相关论文
共 12 条
[1]  
Apalara T.A., A general decay for a weakly nonlinearly damped porous system, J. Dyn. Contr. Sys., 25, 3, pp. 311-322, (2019)
[2]  
Apalara T.A., Nass A.M., Al Sulaimani H., On a laminated Timoshenko beam with nonlinear structural damping, Math. Comput. Appl., 25, 2, (2020)
[3]  
Bofill F., Quintanilla R., Anti-plane shear deformations of swelling porous elastic soils, Int. J. Eng. Sci., 41, 8, pp. 801-816, (2003)
[4]  
Iesan D., On the theory of mixtures of thermoelastic solids, J. Thermal Stress., 14, 4, pp. 389-408, (1991)
[5]  
Messaoudi S.A., Mustafa M.I., On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32, 4, pp. 454-469, (2009)
[6]  
Murad M.A., Cushman J.H., Thermomechanical theories for swelling porous media with microstructure, Int. J. Eng. Sci., 38, 5, pp. 517-564, (2000)
[7]  
Quintanilla R., Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation, J. Comput. Appl. Math, 145, 2, pp. 525-533, (2002)
[8]  
Quintanilla R., Existence and exponential decay in the linear theory of viscoelastic mixtures, Eur. J. Mech. A/Solids, 24, 2, pp. 311-324, (2005)
[9]  
Quintanilla R., Exponential stability of solutions of swelling porous elastic soils, Meccanica, 39, 2, pp. 139-145, (2004)
[10]  
Quintanilla R., On the linear problem of swelling porous elastic soils with incompressible fluid, Int. J. Eng. Sci., 40, 13, pp. 1485-1494, (2002)