共 75 条
- [41] Li J., Liu L., Zhou M., Yang J.-J., Chen S., Liu H., Tan F., Feature selection and prediction of small-for-gestational-age infants, J Ambient Intell Humaniz Comput, (2018)
- [42] Liaqat A., Khan M.A., Shah J.H., Sharif M., Yasmin M., Fernandes S.L., Automated ulcer and bleeding classification from wce images using multiple features fusion and selection, J Mech Med Biol, 18, 4, (2018)
- [43] Liu Y., Zheng Y.F., One-against-all multi-class SVM classification using reliability measures, In: Paper Presented at the Neural Networks, 2005, (2005)
- [44] Lopez A.R., Giro-I-nieto X., Burdick J., Marques O., Skin lesion classification from dermoscopic images using deep learning techniques, In: Paper Presented at the Biomedical Engineering (Biomed), 2017 13Th IASTED International Conference On, (2017)
- [45] Machado M., Pereira J., Fonseca-Pinto R., Classification of reticular pattern and streaks in dermoscopic images based on texture analysis, J Med Imaging, 2, 4, (2015)
- [46] Majtner T., Yildirim-Yayilgan S., Hardeberg J.Y., Combining deep learning and hand-crafted features for skin lesion classification, In: Paper Presented at the Image Processing Theory Tools and Applications (IPTA), 2016 6Th International Conference On, (2016)
- [47] Monisha M., Suresh A., Bapu B.T., Rashmi M., Classification of malignant melanoma and benign skin lesion by using back propagation neural network and ABCD rule, Cluster Comput, pp. 1-11, (2018)
- [48] Nasir M., Attique Khan M., Sharif M., Lali I.U., Saba T., Iqbal T., An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach, Microsc Res Tech, 81, 6, pp. 528-543, (2018)
- [49] Okuboyejo D.A., Olugbara O.O., Odunaike S.A., Automating skin disease diagnosis using image classification, In: Paper Presented at the Proceedings of the World Congress on Engineering and Computer Science, (2013)
- [50] Oliveira R.B., Papa J.P., Pereira A.S., Tavares J.M.R., Computational methods for pigmented skin lesion classification in images: review and future trends, Neural Comput Appl, 29, 3, pp. 613-636, (2018)