Extremal Problems for Operators in Banach Spaces Arising in the Study of Linear Operator Pencils

被引:0
作者
V. A. Khatskevich
M. I. Ostrovskii
V. S. Shulman
机构
[1] ORT Braude College,Department of Mathematics
[2] The Catholic University of America,Department of Mathematics
[3] Vologda State Technical University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2005年 / 51卷
关键词
Primary 47A10; 47A30; Secondary 47B10; 46B04; Banach space; bounded linear operator; norm-attaining operator; strictly singular operator;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by some problems on fractional linear transformations the authors introduce and study the class of operators satisfying the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| A \right\| = \max \{ \rho (AB):\left\| B \right\| = 1\} ,$$\end{document} where ρ stands for the spectral radius; and the class of Banach spaces in which all operators satisfy this condition, the authors call such spaces V-spaces. It is shown that many well-known reflexive spaces, in particular, such spaces as Lp(0,1) and Cp, are non-V-spaces if p ≠ 2; and that the spaces lp are V-spaces if and only if 1 < p < ∞. The authors pose and discuss some related open problems.
引用
收藏
页码:109 / 119
页数:10
相关论文
empty
未找到相关数据