Continuity of the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(n,\epsilon )}$$\end{document}-Pseudospectrum in Banach Algebras

被引:0
作者
Kousik Dhara
S. H. Kulkarni
Markus Seidel
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
[2] University of Applied Sciences Zwickau,undefined
关键词
Banach algebra; Spectrum; Pseudospectrum; -Pseudospectrum; 47A10; 47A58;
D O I
10.1007/s00020-019-2530-6
中图分类号
学科分类号
摘要
Let ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, n a non-negative integer, and A a complex unital Banach algebra. Define γn:A×C→[0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _n: A\times {\mathbb {C}}\rightarrow [0,\infty ]$$\end{document} by γn(a,z)=‖(z-a)-2n‖-1/2n,if(z-a)isinvertible0,if(z-a)is not invertible.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \gamma _n(a,z)={\left\{ \begin{array}{ll} \Vert (z -a)^{-2^n}\Vert ^{-1/2^n}, &{}\quad \text {if } (z-a) \text{ is } \text{ invertible }\\ 0, &{}\quad \text {if } (z-a) \text { is not invertible}. \end{array}\right. } \end{aligned}$$\end{document}The (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\epsilon )$$\end{document}-pseudospectrum Λn,ϵ(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{n,\epsilon }(a)$$\end{document} of an element a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document} is defined by Λn,ϵ(a):={λ∈C:γn(a,λ)≤ϵ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{n,\epsilon }(a):= \{\lambda \in {\mathbb {C}}:\gamma _n(a,\lambda )\le \epsilon \}$$\end{document}. We show that γ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _0$$\end{document} is Lipschitz on A×C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times {\mathbb {C}}$$\end{document}, γn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _n$$\end{document} is uniformly continuous on bounded subsets of A×C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times {\mathbb {C}}$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, and γn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _n$$\end{document} is Lipschitz on some particular domains for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}. Using these properties, we establish that the map (ϵ,a)↦Λn,ϵ(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\epsilon ,a)\mapsto \Lambda _{n,\epsilon }(a)$$\end{document} is continuous at (ϵ0,a0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\epsilon _0,a_0)$$\end{document} if and only if the level set {λ∈C:γn(a0,λ)=ϵ0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda \in {\mathbb {C}}: \gamma _n(a_0,\lambda )= \epsilon _0 \}$$\end{document} does not contain any non-empty open set. In particular, this happens when a is a compact operator on a Banach space or a bounded operator on a Hilbert space or on an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p $$\end{document} space with 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document}. We also give examples of operators where this condition is not satisfied, and consequently, the map is not continuous.
引用
收藏
相关论文
共 29 条
[1]  
Bögli S(2014)Remarks on the convergence of pseudospectra Integral Equ. Oper. Theory 80 303-321
[2]  
Siegl P(1994)Pseudospectra and singular values of large convolution operators J. Integral Equ. Appl. 6 267-301
[3]  
Böttcher A(1997)Norms of inverses, spectra, and pseudospectra of large truncated Wiener–Hopf operators and Toeplitz matrices N. Y. J. Math. 3 1-31
[4]  
Böttcher A(2002)Can spectral value sets of Toeplitz band matrices jump? Linear Algebra Appl. 351 99-116
[5]  
Grudsky SM(2000)Pseudospectra of differential operators J. Oper. Theory 43 243-262
[6]  
Silbermann B(2005)A defence of mathematical pluralism Philos. Math. 13 252-276
[7]  
Böttcher A(2018)The J. Math. Anal. Appl. 464 939-954
[8]  
Grudsky SM(2000)-pseudospectrum of an element of a Banach algebra Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456 1397-1418
[9]  
Davies EB(1975)Spectral value sets of closed linear operators Proc. Am. Math. Soc. 47 175-178
[10]  
Davies EB(1976)On complex strict and uniform convexity Ill. J. Math. 20 503-506