共 50 条
On 1-isometries of affine quadrics over finite fields
被引:0
作者:
Eberhard M. Schröder
机构:
[1] Mathematisches Seminar der Universität,
关键词:
Vector Space;
Quadratic Form;
Finite Field;
Exceptional Case;
Fixed Element;
D O I:
10.1007/BF01237504
中图分类号:
学科分类号:
摘要:
Letq be a regular quadratic form on a vector space (V,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{F}$$
\end{document}) and assume\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$4 \leqslant dim V \leqslant \infty \wedge |\mathbb{F}| \in \mathbb{N}$$
\end{document}. A 1-isometry of the central quadric\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{F}: = \{ x \in V|q(x) = 1\}$$
\end{document} is a permutation ϕ of\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{F}$$
\end{document} such that(*)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$q(x - y) = \nu \Leftrightarrow q(x^\varphi - y^\varphi ) = \nu \forall x,y \in \mathcal{F}$$
\end{document} holds true for a fixed element ν of\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{F}$$
\end{document}. For arbitraryν ∈\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{F}$$
\end{document} we prove thatϕ is induced (in a certain sense) by a semi-linear bijection\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(\sigma ,\varrho ):(V,\mathbb{F}) \to (V,\mathbb{F})$$
\end{document} such thatq oσ =ϱ oq, provided\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{F}$$
\end{document} contains lines and the exceptional case\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(\nu = 2 \Lambda |\mathbb{F}| = 3 \Lambda \dim V = 4 \Lambda |\mathcal{F}| = 24)$$
\end{document} is excluded. In the exceptional case and as well in case of dim V = 3 there are counterexamples. The casesν ≠ 2 and v=2 require different techniques.
引用
收藏
页码:164 / 181
页数:17
相关论文
共 50 条