On 1-isometries of affine quadrics over finite fields

被引:0
|
作者
Eberhard M. Schröder
机构
[1] Mathematisches Seminar der Universität,
关键词
Vector Space; Quadratic Form; Finite Field; Exceptional Case; Fixed Element;
D O I
10.1007/BF01237504
中图分类号
学科分类号
摘要
Letq be a regular quadratic form on a vector space (V,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}$$ \end{document}) and assume\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$4 \leqslant dim V \leqslant \infty \wedge |\mathbb{F}| \in \mathbb{N}$$ \end{document}. A 1-isometry of the central quadric\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}: = \{ x \in V|q(x) = 1\}$$ \end{document} is a permutation ϕ of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} such that(*)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q(x - y) = \nu \Leftrightarrow q(x^\varphi - y^\varphi ) = \nu \forall x,y \in \mathcal{F}$$ \end{document} holds true for a fixed element ν of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}$$ \end{document}. For arbitraryν ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}$$ \end{document} we prove thatϕ is induced (in a certain sense) by a semi-linear bijection\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\sigma ,\varrho ):(V,\mathbb{F}) \to (V,\mathbb{F})$$ \end{document} such thatq oσ =ϱ oq, provided\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} contains lines and the exceptional case\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\nu = 2 \Lambda |\mathbb{F}| = 3 \Lambda \dim V = 4 \Lambda |\mathcal{F}| = 24)$$ \end{document} is excluded. In the exceptional case and as well in case of dim V = 3 there are counterexamples. The casesν ≠ 2 and v=2 require different techniques.
引用
收藏
页码:164 / 181
页数:17
相关论文
共 50 条
  • [21] On the equational graphs over finite fields
    Mans, Bernard
    Sha, Min
    Smith, Jeffrey
    Sutantyo, Daniel
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64
  • [22] Some Multisecret-Sharing Schemes over Finite Fields
    calkavur, Selda
    Sole, Patrick
    MATHEMATICS, 2020, 8 (05)
  • [23] Finite group subschemes of abelian varieties over finite fields
    Rybakov, Sergey
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 : 132 - 150
  • [24] The curve Yn = Xl (Xm+1) over finite fields II
    Tafazolian, Saeed
    Torres, Fernando
    ADVANCES IN GEOMETRY, 2021, 21 (03) : 385 - 390
  • [25] Two-torsion in the Jacobian of hyperelliptic curves over finite fields
    Cornelissen, G
    ARCHIV DER MATHEMATIK, 2001, 77 (03) : 241 - 246
  • [26] Two-torsion in the Jacobian of hyperelliptic curves over finite fields
    G. Cornelissen
    Archiv der Mathematik, 2001, 77 : 241 - 246
  • [27] SOME PRIMITIVE POLYNOMIALS OVER FINITE FIELDS
    Seunghwan Chang
    June Bok Lee Department of Mathematics
    Acta Mathematica Scientia, 2001, (03) : 412 - 416
  • [28] On inverted Kloosterman sums over finite fields
    Xin Lin
    Daqing Wan
    Mathematische Zeitschrift, 2024, 306
  • [29] A construction of primitive polynomials over finite fields
    Cardell, Sara D.
    Climent, Joan-Josep
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12) : 2424 - 2431
  • [30] On the differential uniformities of functions over finite fields
    Qu LongJiang
    Li Chao
    Dai QingPing
    Kong ZhiYin
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1477 - 1484