On 1-isometries of affine quadrics over finite fields

被引:0
|
作者
Eberhard M. Schröder
机构
[1] Mathematisches Seminar der Universität,
关键词
Vector Space; Quadratic Form; Finite Field; Exceptional Case; Fixed Element;
D O I
10.1007/BF01237504
中图分类号
学科分类号
摘要
Letq be a regular quadratic form on a vector space (V,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}$$ \end{document}) and assume\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$4 \leqslant dim V \leqslant \infty \wedge |\mathbb{F}| \in \mathbb{N}$$ \end{document}. A 1-isometry of the central quadric\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}: = \{ x \in V|q(x) = 1\}$$ \end{document} is a permutation ϕ of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} such that(*)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q(x - y) = \nu \Leftrightarrow q(x^\varphi - y^\varphi ) = \nu \forall x,y \in \mathcal{F}$$ \end{document} holds true for a fixed element ν of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}$$ \end{document}. For arbitraryν ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}$$ \end{document} we prove thatϕ is induced (in a certain sense) by a semi-linear bijection\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\sigma ,\varrho ):(V,\mathbb{F}) \to (V,\mathbb{F})$$ \end{document} such thatq oσ =ϱ oq, provided\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} contains lines and the exceptional case\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\nu = 2 \Lambda |\mathbb{F}| = 3 \Lambda \dim V = 4 \Lambda |\mathcal{F}| = 24)$$ \end{document} is excluded. In the exceptional case and as well in case of dim V = 3 there are counterexamples. The casesν ≠ 2 and v=2 require different techniques.
引用
收藏
页码:164 / 181
页数:17
相关论文
共 50 条
  • [1] Integral automorphisms of affine spaces over finite fields
    Kovacs, Istvan
    Kutnar, Klavdija
    Ruff, Janos
    Szonyi, Tamas
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 181 - 188
  • [2] Integral automorphisms of affine spaces over finite fields
    István Kovács
    Klavdija Kutnar
    János Ruff
    Tamás Szőnyi
    Designs, Codes and Cryptography, 2017, 84 : 181 - 188
  • [3] Solving some affine equations over finite fields
    Mesnager, Sihem
    Kim, Kwang Ho
    Choe, Jong Hyok
    Lee, Dok Nam
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [4] Maximal integral point sets in affine planes over finite fields
    Kiermaier, Michael
    Kurz, Sascha
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4564 - 4575
  • [5] Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues
    Ryabov, Vladimir G.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (06) : 387 - 403
  • [6] PIECEWISE-AFFINE PERMUTATIONS OF FINITE FIELDS
    Bugrov, A. D.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2015, 30 (04): : 5 - 23
  • [7] Random Krylov spaces over finite fields
    Brent, RP
    Gao, SH
    Lauder, AGB
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (02) : 276 - 287
  • [8] Restriction of a quadratic form over a finite field to a nondegenerate affine quadric hypersurface
    Ballico, Edoardo
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (01) : 1 - 11
  • [9] Characterizations and constructions of n-to-1 mappings over finite fields
    Niu, Tailin
    Li, Kangquan
    Qu, Longjiang
    Li, Chao
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 85
  • [10] On the curve Yn = Xl (Xm+1) over finite fields
    Tafazolian, Saeed
    Torres, Fernando
    ADVANCES IN GEOMETRY, 2019, 19 (02) : 263 - 268