Threshold odd solutions to the nonlinear Schrödinger equation in one dimension

被引:2
作者
Gustafson, Stephen [1 ]
Inui, Takahisa [1 ,2 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T1Z2, Canada
[2] Osaka Univ, Grad Sch Sci, Dept Math, Machikaneyama Cho 1-1, Toyonaka, Osaka 5600043, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2022年 / 3卷 / 04期
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
Nonlinear Schr & ouml; dinger equation; Odd functions; Global dynamics; Threshold; SCHRODINGER-EQUATION; GROUND-STATE; GLOBAL DYNAMICS; SCATTERING; PROOF;
D O I
10.1007/s42985-022-00183-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider odd solutions to the Schr & ouml;dinger equation with the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document}-supercritical power type nonlinearity in one dimensional Euclidean space. It is known that the odd solution scatters or blows up if its action is less than twice that of the ground state. In the present paper, we show that odd solutions with action twice that of the ground state scatter or blow up.
引用
收藏
页数:45
相关论文
共 26 条
[1]   Blowup and scattering problems for the nonlinear Schrodinger equations [J].
Akahori, Takafumi ;
Nawa, Hayato .
KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) :629-672
[2]   Threshold scattering for the focusing NLS with a repulsive Dirac delta potential [J].
Ardila, Alex H. ;
Inui, Takahisa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 313 :54-84
[3]   SCATTERING BELOW THE GROUND STATE FOR THE 2d RADIAL NONLINEAR SCHRODINGER EQUATION [J].
Arora, Anudeep Kumar ;
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) :1653-1663
[4]  
Campos L, 2020, Arxiv, DOI arXiv:2010.14434
[5]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[6]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics
[7]   MULTI-EXISTENCE OF MULTI-SOLITONS FOR THE SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION IN ONE DIMENSION [J].
Combet, Vianney .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :1961-1993
[8]   A new proof of scattering below the ground state for the non-radial focusing NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) :1805-1825
[9]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867
[10]   Threshold solutions in the focusing 3D cubic NLS equation outside a strictly convex obstacle [J].
Duyckaerts, Thomas ;
Landoulsi, Oussama ;
Roudenko, Svetlana .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (05)