Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations

被引:0
|
作者
Anotida Madzvamuse
Hussaini S. Ndakwo
Raquel Barreira
机构
[1] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[2] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[3] Escola Superior de Tecnologia do Barreiro/IPS,Rua Américo da Silva Marinho
来源
Journal of Mathematical Biology | 2015年 / 70卷
关键词
Cross-diffusion reaction systems; Cross-diffusion driven instability; Parameter space identification; Pattern formation; Planary domains; Finite element method; 35K57; 92Bxx; 37D99; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30–39, 1972; Prigogine and Lefever, J Chem Phys 48:1695–1700, 1968; Schnakenberg, J Theor Biol 81:389–400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator–inhibitor mechanism as premises for pattern formation, activator–activator, inhibitor–inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.
引用
收藏
页码:709 / 743
页数:34
相关论文
共 50 条
  • [41] Control of transversal instabilities in reaction-diffusion systems
    Totz, Sonja
    Loeber, Jakob
    Totz, Jan Frederik
    Engel, Harald
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [42] Coupled and forced patterns in reaction-diffusion systems
    Epstein, Irving R.
    Berenstein, Igal B.
    Dolnik, Milos
    Vanag, Vladimir K.
    Yang, Lingfa
    Zhabotinsky, Anatol M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1864): : 397 - 408
  • [43] Optimal control of networked reaction-diffusion systems
    Gao, Shupeng
    Chang, Lili
    Romic, Ivan
    Wang, Zhen
    Jusup, Marko
    Holme, Petter
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (188)
  • [44] Pattern formation mechanisms in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (5-6) : 673 - 681
  • [45] On Spatially Uniform Behavior in Reaction-Diffusion Systems
    Arcak, Murat
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 2587 - 2592
  • [46] Dynamics of reaction-diffusion systems in a subdiffusive regime
    Hernandez, D.
    Varea, C.
    Barrio, R. A.
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [47] Scaling of morphogenetic patterns in reaction-diffusion systems
    Rasolonjanahary, Manan'Iarivo
    Vasiev, Bakhtier
    JOURNAL OF THEORETICAL BIOLOGY, 2016, 404 : 109 - 119
  • [48] Turing Instability and Amplitude Equation of Reaction-Diffusion System with Multivariable
    Zheng, Qianqian
    Shen, Jianwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [49] Noisy-flow-induced instability in a reaction-diffusion system
    Paul, Shibashis
    Ghosh, Shyamolina
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [50] Turing Instability and Pattern Induced by Cross-Diffusion for a Nonlinear Reaction-Diffusion System of Turbulence-Shear Flow Interaction
    周辉
    彭亚红
    Journal of Donghua University(English Edition), 2017, 34 (05) : 689 - 693