Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations

被引:0
|
作者
Anotida Madzvamuse
Hussaini S. Ndakwo
Raquel Barreira
机构
[1] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[2] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[3] Escola Superior de Tecnologia do Barreiro/IPS,Rua Américo da Silva Marinho
来源
Journal of Mathematical Biology | 2015年 / 70卷
关键词
Cross-diffusion reaction systems; Cross-diffusion driven instability; Parameter space identification; Pattern formation; Planary domains; Finite element method; 35K57; 92Bxx; 37D99; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30–39, 1972; Prigogine and Lefever, J Chem Phys 48:1695–1700, 1968; Schnakenberg, J Theor Biol 81:389–400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator–inhibitor mechanism as premises for pattern formation, activator–activator, inhibitor–inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.
引用
收藏
页码:709 / 743
页数:34
相关论文
共 50 条
  • [31] On Turing Instability in Nonhomogeneous Reaction-Diffusion CNN's
    Goras, Liviu
    Ungureanu, Paul
    Chua, Leon O.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (10) : 2748 - 2760
  • [32] The local integral equation method for pattern formation simulations in reaction-diffusion systems
    Sladek, V.
    Sladek, J.
    Shirzadi, A.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 50 : 329 - 340
  • [33] PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS ON GROWNING DOMAINS
    Gonzalez, Libardo A.
    Vanegas, Juan C.
    Garzon, Diego A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02): : 145 - 161
  • [34] MODALITY ANALYSIS OF PATTERNS IN REACTION-DIFFUSION SYSTEMS WITH RANDOM PERTURBATIONS
    Kolinichenko, A. P.
    Ryashko, L. B.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2019, 53 : 73 - 82
  • [35] Understanding the dual effects of linear cross-diffusion and geometry on reaction-diffusion systems for pattern formation
    Sarfaraz, Wakil
    Yigit, Gulsemay
    Barreira, Raquel
    Remaki, Lakhdar
    Alhazmi, Muflih
    Madzvamuse, Anotida
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [36] Analysis and numerical simulation of cross reaction-diffusion systems with the Caputo-Fabrizio and Riesz operators
    Owolabi, Kolade M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1915 - 1937
  • [37] Stochastic Analysis of Reaction-Diffusion Processes
    Hu, Jifeng
    Kang, Hye-Won
    Othmer, Hans G.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (04) : 854 - 894
  • [38] Stationary multiple spots for reaction-diffusion systems
    Wei, Juncheng
    Winter, Matthias
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (01) : 53 - 89
  • [39] Spatiotemporal antiresonance in coupled reaction-diffusion systems
    Pal, Krishnendu
    Paul, Shibashis
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [40] Isolating Patterns in Open Reaction-Diffusion Systems
    Krause, Andrew L.
    Klika, Vaclav
    Maini, Philip K.
    Headon, Denis
    Gaffney, Eamonn A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (07)