Multipliers and integration operators between conformally invariant spaces

被引:0
作者
Daniel Girela
Noel Merchán
机构
[1] Universidad de Málaga,Departamento de Análisis Matemático, Estadística e Investigación Operativa, y Matemática Aplicada
[2] Universidad de Málaga,Departamento de Matemática Aplicada
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Möbius invariant spaces; Besov spaces; Multipliers; Integration operators; Carleson measures; 30H25; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are concerned with two classes of conformally invariant spaces of analytic functions in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document}, the Besov spaces Bp(1≤p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^p (1\le p<\infty )$$\end{document} and the Qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_s$$\end{document} spaces (0<s<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<s<\infty )$$\end{document}. Our main objective is to characterize for a given pair (X, Y) of spaces in these classes, the space of pointwise multipliers M(X, Y), as well as to study the related questions of obtaining characterizations of those g analytic in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document} such that the Volterra operator Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} or the companion operator Ig\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_g$$\end{document} with symbol g is a bounded operator from X into Y.
引用
收藏
相关论文
共 83 条
  • [1] Aleman A(2001)An integral operator on J. Anal. Math. 85 157-176
  • [2] Cima JA(2010) and Hardy’s inequality Can. J. Math. 62 961-974
  • [3] Aleman A(2004)Multiplicative isometries and isometric zero-divisors Complex Var. Theory Appl. 49 487-510
  • [4] Duren PL(1995)Estimates in Möbius invariant spaces of analytic functions Complex Variables Theory Appl. 28 149-158
  • [5] Martín MJ(1997)An integral operator on Indiana Univ. Math. J. 46 337-356
  • [6] Vukotić D(1979)Integration operators on Bergman spaces Comment. Math. Helv. 54 309-317
  • [7] Aleman A(1974)On division by inner factors J. Reine Angew. Math. 270 12-37
  • [8] Simbotin A(1985)On Bloch functions and normal functions J. Reine Angew. Math. 363 110-145
  • [9] Aleman A(2002)Möbius invariant function spaces Rev. Mat. Iberoam. 18 443-510
  • [10] Siskakis AG(1995)Carleson measures for analytic Besov spaces Acta Sci. Math. (Szeged) 60 31-48