An enhanced semi-explicit particle finite element method for incompressible flows

被引:0
作者
Julio Marti
Eugenio Oñate
机构
[1] Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE),
[2] Universitat Politècnica de Catalunya (UPC),undefined
来源
Computational Mechanics | 2022年 / 70卷
关键词
Incompressible Navier–Stokes; PFEM; Lagrangian; Strang splitting;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an enhanced version of the semi-explicit Particle Finite Element Method for incompressible flow problems is presented. This goal is achieved by improving the solution of the advective sub-problem that results of applying the Strang operator splitting to the Navier–Stokes equations. An acceleration term is taken into account in the solution of the advective step and the Stokes problem. The solution of the advetive step is perfomed using a SPH kernel. Two test cases are solved for validating the methodology and estimating its accuracy. The numerical results demonstrate that the proposed scheme improves the accuracy of the semi-explicit PFEM scheme.
引用
收藏
页码:607 / 620
页数:13
相关论文
共 50 条
[32]   A priori estimates of the unsteady incompressible thermomicropolar fluid equations and its numerical analysis based on penalty finite element method [J].
Liu, Demin ;
Guo, Junru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 137
[33]   Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method [J].
M. Cremonesi ;
S. Meduri ;
U. Perego .
Computational Particle Mechanics, 2020, 7 :41-56
[34]   Modelling and simulation of the sea-landing of aerial vehicles using the Particle Finite Element Method [J].
Ryzhakov, P. ;
Rossi, R. ;
Vina, A. ;
Onate, E. .
OCEAN ENGINEERING, 2013, 66 :92-100
[35]   Stabilizing nodal integration in dynamic smoothed particle finite element method: A simple and efficient algorithm [J].
Yuan, Wei-Hai ;
Liu, Ming ;
Dai, Bei-Bing ;
Wang, Yuan ;
Chan, Andrew ;
Zhang, Wei ;
Zheng, Xiang-Cou .
COMPUTERS AND GEOTECHNICS, 2024, 169
[36]   Dynamic analysis of large deformation problems in saturated porous media by smoothed particle finite element method [J].
Yuan, Wei-Hai ;
Zhu, Jin-Xin ;
Liu, Kang ;
Zhang, Wei ;
Dai, Bei-Bing ;
Wang, Yuan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
[37]   Surface tension problems solved with the particle finite element method using large time-steps [J].
Gimenez, Juan M. ;
Nigro, Norberto M. ;
Idelsohn, Sergio R. ;
Onate, Eugenio .
COMPUTERS & FLUIDS, 2016, 141 :90-104
[38]   RECENT ADVANCES IN THE PARTICLE FINITE ELEMENT METHOD. TOWARDS MORE COMPLEX FLUID FLOW APPLICATIONS [J].
Nigro, Norberto M. ;
Novara, Pablo ;
Gimenez, Juan M. ;
Bergallo, Marta B. ;
Calvo, Nestor A. ;
Morin, Pedro ;
Idelsohn, Sergio R. .
COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, :966-977
[39]   Lagrangian-Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method [J].
Cremonesi, M. ;
Meduri, S. ;
Perego, U. .
COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (01) :41-56
[40]   A particle finite element method approach to model shear cutting of high-strength steel sheets [J].
Sandin, Olle ;
Rodriguez, Juan Manuel ;
Larour, Patrick ;
Parareda, Sergi ;
Frometa, David ;
Hammarberg, Samuel ;
Kajberg, Jorgen ;
Casellas, Daniel .
COMPUTATIONAL PARTICLE MECHANICS, 2024, 11 (05) :1863-1886