Two-level matrix factorization for recommender systems

被引:0
|
作者
Fangfang Li
Guandong Xu
Longbing Cao
机构
[1] University of Technology Sydney,
来源
Neural Computing and Applications | 2016年 / 27卷
关键词
Recommender system; Matrix factorization; Latent factor model; Textual semantic relation;
D O I
暂无
中图分类号
学科分类号
摘要
Many existing recommendation methods such as matrix factorization (MF) mainly rely on user–item rating matrix, which sometimes is not informative enough, often suffering from the cold-start problem. To solve this challenge, complementary textual relations between items are incorporated into recommender systems (RS) in this paper. Specifically, we first apply a novel weighted textual matrix factorization (WTMF) approach to compute the semantic similarities between items, then integrate the inferred item semantic relations into MF and propose a two-level matrix factorization (TLMF) model for RS. Experimental results on two open data sets not only demonstrate the superiority of TLMF model over benchmark methods, but also show the effectiveness of TLMF for solving the cold-start problem.
引用
收藏
页码:2267 / 2278
页数:11
相关论文
共 50 条
  • [1] Two-level matrix factorization for recommender systems
    Li, Fangfang
    Xu, Guandong
    Cao, Longbing
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (08): : 2267 - 2278
  • [2] An Improved Recommender System Using Two-Level Matrix Factorization for Product Ontologies
    Katarya, Rahul
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 223 - 226
  • [3] GPU Accelerated Matrix Factorization for Recommender Systems
    Kilitcioglu, Doruk
    Greenquist, Nicholas
    Zahran, Mohamed
    Bari, Anasse
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021), 2021, : 272 - 281
  • [4] Parallel matrix factorization for recommender systems
    Hsiang-Fu Yu
    Cho-Jui Hsieh
    Si Si
    Inderjit S. Dhillon
    Knowledge and Information Systems, 2014, 41 : 793 - 819
  • [5] Parallel matrix factorization for recommender systems
    Yu, Hsiang-Fu
    Hsieh, Cho-Jui
    Si, Si
    Dhillon, Inderjit S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 41 (03) : 793 - 819
  • [6] HYBRID MATRIX FACTORIZATION FOR RECOMMENDER SYSTEMS IN SOCIAL NETWORKS
    Zhao, C.
    Sun, S.
    Han, L.
    Peng, Q.
    NEURAL NETWORK WORLD, 2016, 26 (06) : 559 - 569
  • [7] A differential privacy framework for matrix factorization recommender systems
    Arik Friedman
    Shlomo Berkovsky
    Mohamed Ali Kaafar
    User Modeling and User-Adapted Interaction, 2016, 26 : 425 - 458
  • [8] Incremental Learning for Matrix Factorization in Recommender Systems
    Yu, Tong
    Mengshoel, Ole J.
    Jude, Alvin
    Feller, Eugen
    Forgeat, Julien
    Radia, Nimish
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 1056 - 1063
  • [9] Similarity based Matrix Factorization for Recommender Systems
    Zhang, Gen
    Zhou, Xu
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL. 1, 2017, : 7 - 11
  • [10] A Review on Matrix Factorization Techniques in Recommender Systems
    Mehta, Rachana
    Rana, Keyur
    2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS, COMPUTING AND IT APPLICATIONS (CSCITA), 2017, : 269 - 274