Integral transforms for logharmonic mappings

被引:0
|
作者
Hugo Arbeláez
Víctor Bravo
Rodrigo Hernández
Willy Sierra
Osvaldo Venegas
机构
[1] Universidad Nacional de Colombia,Facultad de Ciencias
[2] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
[3] Universidad del Cauca,Departamento de Matemáticas
[4] Universidad Católica de Temuco,Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Integral transform; Logharmonic mappings; Shear construction; Univalent mappings; 31A05; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Bieberbach’s conjecture was very important in the development of geometric function theory, not only because of the result itself, but also due to the large amount of methods that have been developed in search of its proof. It is in this context that the integral transformations of the type fα(z)=∫0z(f(ζ)/ζ)αdζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\alpha }(z)=\int _{0}^{z}(f(\zeta )/\zeta )^{\alpha }\,d\zeta $\end{document} or Fα(z)=∫0z(f′(ζ))αdζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\alpha }(z)=\int _{0}^{z}(f'(\zeta ))^{\alpha }\,d\zeta $\end{document} appear. In this note we extend the classical problem of finding the values of α∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in \mathbb{C}$\end{document} for which either fα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\alpha }$\end{document} or Fα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\alpha }$\end{document} are univalent, whenever f belongs to some subclasses of univalent mappings in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{D}$\end{document}, to the case of logharmonic mappings by considering the extension of the shear construction introduced by Clunie and Sheil-Small in (Clunie and Sheil-Small in Ann. Acad. Sci. Fenn., Ser. A I 9:3–25, 1984) to this new scenario.
引用
收藏
相关论文
共 50 条
  • [1] Integral transforms for logharmonic mappings
    Arbelaez, Hugo
    Bravo, Victor
    Hernandez, Rodrigo
    Sierra, Willy
    Venegas, Osvaldo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [2] Integral means and arclength inequalities for typically real logharmonic mappings
    Abdulhadi, Z.
    Aydogan, M.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (01) : 27 - 32
  • [3] Properties of Logharmonic Mappings
    Meng, Liqing
    Ponnusamy, Saminathan
    Qiao, Jinjing
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [4] Univalent Logharmonic Mappings in the Plane
    Abdulhadi, Zayid
    Ali, Rosihan M.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] UNIVALENT LOGHARMONIC RING MAPPINGS
    ABDULHADI, Z
    HENGARTNER, W
    SZYNAL, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (03) : 735 - 745
  • [6] On rotationally starlike logharmonic mappings
    AbdulHadi, Z.
    Ali, Rosihan M.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (07) : 723 - 729
  • [7] ON A SPECIAL CLASS OF LOGHARMONIC MAPPINGS
    Abdulhadi Z.
    Hajj L.E.
    Journal of Mathematical Sciences, 2024, 280 (4) : 529 - 539
  • [8] Logharmonic mappings on linearly connected domains
    Layan El Hajj
    Analysis and Mathematical Physics, 2019, 9 : 829 - 837
  • [9] The Bohr radius for starlike logharmonic mappings
    Ali, Rosihan M.
    Abdulhadi, Zayid
    Ng, Zhen Chuan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) : 1 - 14
  • [10] Stable geometrical properties of logharmonic mappings
    AbdulHadi, Zayid
    El Hajj, Layan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (06) : 854 - 870