Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions

被引:0
|
作者
Ghassan A. Al-Juaifri
Akil J. Harfash
机构
[1] University of Basrah,Department of Mathematics, College of Sciences
[2] University of Kufa,Department of Mathematics,Faculty of Computer Science and Mathematics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Existence; Uniqueness; Faedo-Galerkin; Robin boundary conditions; Fitzhugh-Nagumo; Weak solution; Strong solution; 35K57; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the system of reaction-diffusion equations of the Fitzhugh-Nagumo (FHN) type on open bounded convex domains D⊂Rd(d≤3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D} \subset \mathbb {R}^{d} (d \le 3)$$\end{document} with Robin boundary conditions. The Classical Faedo-Galerkin approach Lions (Quelques méthodes de résolution des problemes aux limites non linéaires 1969) and compactness arguments are utilised to show the existence, uniqueness, and continuous dependence on initial data of weak and strong solutions. Moreover, we introduce a complete case study for the application of this approach to the Fitzhugh-Nagumo system.
引用
收藏
页码:335 / 357
页数:22
相关论文
共 50 条
  • [31] Solvability for a drift-diffusion system with Robin boundary conditions
    Heibig, A.
    Petrov, A.
    Reichert, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (04) : 2331 - 2356
  • [32] A parameter uniform essentially first-order convergent numerical method for a parabolic system of singularly perturbed differential equations of reaction-diffusion type with initial and Robin boundary conditions
    Ishwariya, R.
    Miller, J. J. H.
    Valarmathi, S.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2019, 12 (01)
  • [33] Reliable numerical analysis for stochastic reaction-diffusion system
    Yasin, Muhammad W.
    Ahmed, Nauman
    Iqbal, Muhammad Sajid
    Rafiq, Muhammad
    Raza, Ali
    Akgul, Ali
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [34] Nonlinear parabolic equations with Robin boundary conditions and Hardy-Leray type inequalities
    Goldstein, Gisele
    Goldstein, Jerome
    Kombe, Ismail
    Balekoglu, Reyhan Tellioglu
    STOCHASTIC PROCESSES AND FUNCTIONAL ANALYSIS: NEW PERSPECTIVES, 2021, 774 : 55 - 70
  • [35] Asymptotic regularity and attractors of the reaction-diffusion equation with nonlinear boundary condition
    Yang, Lu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1069 - 1079
  • [36] Local existence result in time for a drift-diffusion system with Robin boundary conditions
    Heibig, Arnaud
    Petrov, Adrien
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [37] ON A SYSTEM OF NONLINEAR PSEUDOPARABOLIC EQUATIONS WITH ROBIN-DIRICHLET BOUNDARY CONDITIONS
    Ngoc, Le Thi Phuong
    Uyen, Khong Thi Thao
    Nhan, Nguyen Huu
    Long, Nguyen Thanh
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (02) : 585 - 623
  • [38] A reaction-diffusion system with mixed-type coupling
    Wang, Jinhuan
    Zhao, Lizhong
    Zheng, Sining
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4219 - 4224
  • [39] KPP reaction-diffusion system with a nonlinear loss inside a cylinder
    Giletti, Thomas
    NONLINEARITY, 2010, 23 (09) : 2307 - 2332
  • [40] ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING PREDATOR-PREY WITH PREY-TAXIS
    Bendahmane, Mostafa
    NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (04) : 863 - 879