Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions

被引:0
|
作者
Ghassan A. Al-Juaifri
Akil J. Harfash
机构
[1] University of Basrah,Department of Mathematics, College of Sciences
[2] University of Kufa,Department of Mathematics,Faculty of Computer Science and Mathematics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Existence; Uniqueness; Faedo-Galerkin; Robin boundary conditions; Fitzhugh-Nagumo; Weak solution; Strong solution; 35K57; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the system of reaction-diffusion equations of the Fitzhugh-Nagumo (FHN) type on open bounded convex domains D⊂Rd(d≤3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D} \subset \mathbb {R}^{d} (d \le 3)$$\end{document} with Robin boundary conditions. The Classical Faedo-Galerkin approach Lions (Quelques méthodes de résolution des problemes aux limites non linéaires 1969) and compactness arguments are utilised to show the existence, uniqueness, and continuous dependence on initial data of weak and strong solutions. Moreover, we introduce a complete case study for the application of this approach to the Fitzhugh-Nagumo system.
引用
收藏
页码:335 / 357
页数:22
相关论文
共 50 条
  • [1] Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions
    Al-Juaifri, Ghassan A.
    Harfash, Akil J.
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 335 - 357
  • [2] Finite element analysis of nonlinear reaction-diffusion system of Fitzhugh-Nagumo type with Robin boundary conditions
    Al-Juaifri, Ghassan A.
    Harfash, Akil J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 486 - 517
  • [3] QUALITATIVE ANALYSIS OF CERTAIN REACTION-DIFFUSION SYSTEMS OF THE FITZHUGH-NAGUMO TYPE
    Ambrisio, B.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2023, 12 (06): : 1507 - 1526
  • [4] RIGOROUS DERIVATION OF THE NONLOCAL REACTION-DIFFUSION FITZHUGH-NAGUMO SYSTEM
    Crevat, Joachim
    Faye, Gregory
    Filbet, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 346 - 373
  • [5] Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (05) : 934 - 943
  • [6] Patterns of interaction of coupled reaction-diffusion systems of the FitzHugh-Nagumo type
    Zhang, Chunrui
    Ke, Ai
    Zheng, Baodong
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1451 - 1476
  • [7] GLOBAL ATTRACTOR OF COMPLEX NETWORKS OF REACTION-DIFFUSION SYSTEMS OF FITZHUGH-NAGUMO TYPE
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    Phan, V. L. E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3787 - 3797
  • [8] Cluster solutions for the FitzHugh-Nagumo system with Neumann boundary conditions
    Hu, Yeyao
    Xie, Weihong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 374 : 95 - 125
  • [9] Synchronization of FitzHugh-Nagumo reaction-diffusion systems via one-dimensional linear control law
    Ouannas, Adel
    Mesdoui, Fatiha
    Momani, Shaher
    Batiha, Iqbal
    Grassi, Giuseppe
    ARCHIVES OF CONTROL SCIENCES, 2021, 31 (02) : 333 - 345
  • [10] Single peak solutions for an elliptic system of FitzHugh-Nagumo type
    Wang, Bingqi
    Zhou, Xiangyu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (02)