Locally homogeneous nearly Kähler manifolds

被引:0
|
作者
V. Cortés
J. J. Vásquez
机构
[1] Universität Hamburg,Department Mathematik und Zentrum für Mathematische Physik
[2] Max-Planck-Institut für Mathematik in den Naturwissenschaften,undefined
来源
Annals of Global Analysis and Geometry | 2015年 / 48卷
关键词
Nearly Kähler manifolds; Locally homogeneous spaces; Einstein manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We construct locally homogeneous six-dimensional nearly Kähler manifolds as quotients of homogeneous nearly Kähler manifolds M by freely acting finite subgroups of Aut0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)$$\end{document}. We show that non-trivial such groups do only exists if M=S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=S^3\times S^3$$\end{document}. In that case, we classify all freely acting subgroups of Aut0(M)=SU(2)×SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Aut}}}_0(M)=\text {SU}(2) \times \text {SU}(2) \times \text {SU}(2)$$\end{document} of the form A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times B$$\end{document}, where A⊂SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \text {SU}(2) \times \text {SU}(2)$$\end{document} and B⊂SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\subset \text {SU}(2)$$\end{document}.
引用
收藏
页码:269 / 294
页数:25
相关论文
共 17 条
  • [1] Locally homogeneous nearly Kahler manifolds
    Cortes, V.
    Vasquez, J. J.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (03) : 269 - 294
  • [2] Topology of Asymptotically Conical Calabi–Yau and G2 Manifolds and Desingularization of Nearly Kähler and Nearly G2 Conifolds
    Lothar Schiemanowski
    The Journal of Geometric Analysis, 2023, 33
  • [3] Locally Homogeneous C0-Riemannian Manifolds
    Lebedeva, Nina
    Nepechiy, Artem
    TRANSFORMATION GROUPS, 2023,
  • [4] Kähler manifolds of quasi-constant holomorphic sectional curvature and generalized Sasakian space forms
    Cornelia-Livia Bejan
    Sinem Güler
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1173 - 1189
  • [5] On 6-Dimensional Nearly Kahler Manifolds
    Watanabe, Yoshiyuki
    Suh, Young Jin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (03): : 564 - 570
  • [6] Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry
    Biquard, Olivier
    Gauduchon, Paul
    LeBrun, Claude
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (20) : 13295 - 13311
  • [7] NOWHERE CONFORMALLY HOMOGENEOUS MANIFOLDS AND LIMITING CARLEMAN WEIGHTS
    Liimatainen, Tony
    Salo, Mikko
    INVERSE PROBLEMS AND IMAGING, 2012, 6 (03) : 523 - 530
  • [8] CHARACTERIZATIONS OF COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS
    Araujo, Jogli G.
    Batista, Marcio
    De Lima, Henrique F.
    COLLOQUIUM MATHEMATICUM, 2018, 153 (02) : 149 - 162
  • [9] Deformations of G2-instantons on nearly G2 manifolds
    Singhal, Ragini
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (02) : 329 - 366
  • [10] On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds
    Aquino, Cicero P.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (04): : 515 - 529