The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [41] ZERO DIVISOR GRAPH FOR THE RING OF GAUSSIAN INTEGERS MODULO n
    Abu Osba, Emad
    Al-Addasi, Salah
    Abu Jaradeh, Nafiz
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3865 - 3877
  • [42] The trace graph of the matrix ring over a finite commutative ring
    Almahdi, F. A. A.
    Louartiti, K.
    Tamekkante, M.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 132 - 144
  • [43] Non-Torsion Element Graph of a Module Over a Commutative Ring ∗
    Gogoi, Partha Protim
    Goswami, Jituparna
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [44] THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING
    Alibemani, Abolfazl
    Bakhtyiari, Moharram
    Nikandish, Reza
    Nikmehr, Mohammad Javad
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 417 - 429
  • [45] THE TRIPLE ZERO GRAPH OF A COMMUTATIVE RING
    Yetkin Celikel, Ece
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (02): : 653 - 663
  • [46] On the Nil Graph of Module Over Ring
    Kalita, Sanjoy
    Syngai, Basngewhun
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [47] The annihilator ideal graph of a commutative ring
    Afkhami, Mojgan
    Hoseini, Nesa
    Khashyarmanesh, Kazem
    NOTE DI MATEMATICA, 2016, 36 (01): : 1 - 10
  • [48] THE INDUCED SUBGRAPH OF THE UNITARY CAYLEY GRAPH OF A COMMUTATIVE RING OVER REGULAR ELEMENTS
    Naghipour, Ali Reza
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 965 - 977
  • [49] THE M-REGULAR GRAPH OF A COMMUTATIVE RING
    Nikmehr, M. J.
    Heydari, F.
    MATHEMATICA SLOVACA, 2015, 65 (01) : 1 - 12
  • [50] Distances on the Commuting Graph of the Ring of Real Martices
    Shitov, Ya. N.
    MATHEMATICAL NOTES, 2018, 103 (5-6) : 832 - 835